Wigner's quantum distribution function in spherical coordinates
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 418-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibility is examined of applying the general method for introducing quantum distribution functions (QDF) proposed by Moyal to the concrete system of dynamical spherical variables $\widehat{\varphi}$, $\widehat{\theta}$, $\widehat r$, $\widehat p_{\varphi}$, $\widehat p_{\theta}$, $\widehat p_r$. The Wigner quantum distribution fimction found in this way in spherical coordinates determines the state of a system of particles only if the system is spherically or cylindrically symmetric. The changes are pointed out which must be made in Moyal's expressions for the basis operators $\widehat{\varphi}$, $\widehat{\theta}$, $\widehat r$, $\widehat p_{\varphi}$, $\widehat p_{\theta}$, $\widehat p_r$ if the distribution in the phase space $\varphi$, $\theta$, $r$, $n\hbar$, $m\hbar$, $p_r$ is to describe the state of any system of particles.
@article{TMF_1976_27_3_a13,
     author = {N. A. Denisova},
     title = {Wigner's quantum distribution function in spherical coordinates},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {418--424},
     year = {1976},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a13/}
}
TY  - JOUR
AU  - N. A. Denisova
TI  - Wigner's quantum distribution function in spherical coordinates
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 418
EP  - 424
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a13/
LA  - ru
ID  - TMF_1976_27_3_a13
ER  - 
%0 Journal Article
%A N. A. Denisova
%T Wigner's quantum distribution function in spherical coordinates
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 418-424
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a13/
%G ru
%F TMF_1976_27_3_a13
N. A. Denisova. Wigner's quantum distribution function in spherical coordinates. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 418-424. http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a13/

[1] E. Wigner, Phys. Rev., 40 (1932), 749 | DOI | Zbl

[2] D. Judge, Nuovo Cim., 31 (1964), 332 | DOI | MR | Zbl

[3] D. I. Blokhintsev, Osnovy kvantovoi mekhaniki, «Vysshaya shkola», 1963 | MR

[4] J. E. Moyal, Proc. Cambr. Phil. Soc., 45 (1949), 99 | DOI | MR | Zbl

[5] P. Carruthers, M. Nieto, Rev. Mod. Phys., 40 (1968), 411 | DOI

[6] D. A. Kirzhnits, Polevye metody teorii mnogikh chastits, Atomizdat, 1963

[7] N. F. Khiralla, SAN GSSR, 72 (1973), 557

[8] G. Korn, T. Korn, Spravochnik po matematike, «Nauka», 1966 | Zbl

[9] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, «Nauka», 1966 | MR | Zbl

[10] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, «Nauka», 1971 | Zbl

[11] Yu. L. Klimontovich, DAN SSSR, 108 (1956), 1033 | Zbl

[12] N. A. Denisova, V. L. Konkov, TMF, 22 (1975), 64