Generalization of the inverse scattering problem method
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 283-287

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that every one-dimensional differential operator whose coefficient functions depend on an arbitrary set of parameters is associated with a series of multidimensional nonlinear partial differential equations which can be integrated by means of the inverse scattering problem method.
@article{TMF_1976_27_3_a0,
     author = {V. E. Zakharov and S. V. Manakov},
     title = {Generalization of the inverse scattering problem method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {283--287},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a0/}
}
TY  - JOUR
AU  - V. E. Zakharov
AU  - S. V. Manakov
TI  - Generalization of the inverse scattering problem method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 283
EP  - 287
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a0/
LA  - ru
ID  - TMF_1976_27_3_a0
ER  - 
%0 Journal Article
%A V. E. Zakharov
%A S. V. Manakov
%T Generalization of the inverse scattering problem method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 283-287
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a0/
%G ru
%F TMF_1976_27_3_a0
V. E. Zakharov; S. V. Manakov. Generalization of the inverse scattering problem method. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 283-287. http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a0/