Generalization of the inverse scattering problem method
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 283-287
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that every one-dimensional differential operator whose coefficient functions depend on an arbitrary set of parameters is associated with a series of multidimensional nonlinear partial differential equations which can be integrated by means of the inverse scattering problem method.
@article{TMF_1976_27_3_a0,
author = {V. E. Zakharov and S. V. Manakov},
title = {Generalization of the inverse scattering problem method},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {283--287},
year = {1976},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a0/}
}
V. E. Zakharov; S. V. Manakov. Generalization of the inverse scattering problem method. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 283-287. http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a0/
[1] C. S. Gardner, J. M. Green, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI
[2] V. E. Zakharov, A. B. Shabat, ZhETF, 61 (1971), 118
[3] P. D. Lax, Commun. Pure Appl. Math., 21 (1968), 467 | DOI | MR | Zbl
[4] C. S. Gardner, J. Math. Phys., 12 (1971), 1548 | DOI | MR | Zbl
[5] V. E. Zakharov, L. D. Faddeev, Funkts. analiz, 5:4 (1971)
[6] V. E. Zakharov, S. V. Manakov, TMF, 19 (1974), 332 | Zbl
[7] V. E. Zakharov, A. B. Shabat, Funkts. analiz, 8:3 (1974), 52
[8] F. Colodgero, Preprint, 1975