Finite self-interaction of the classical electromagnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 2, pp. 196-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlocal form of classical electrodynamics is considered by assuming a nonsingular modification of the Coulomb law at short distances. In the present approach, the electromagnetic self-mass of the particle is finite, the self-stress is zero, and the field at a sufficient distance from the source is described by retarded Lienard–Wiechert potentials, and the equation of motion of a particle with allowance for the self-interaction does not have runaway solutions and for a sufficiently smoothly varying external force is approximated to high accuracy by the Lorentz–Dirac equation (1).
@article{TMF_1976_27_2_a7,
     author = {B. P. Kosyakov},
     title = {Finite self-interaction of the classical electromagnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {196--203},
     year = {1976},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a7/}
}
TY  - JOUR
AU  - B. P. Kosyakov
TI  - Finite self-interaction of the classical electromagnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 196
EP  - 203
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a7/
LA  - ru
ID  - TMF_1976_27_2_a7
ER  - 
%0 Journal Article
%A B. P. Kosyakov
%T Finite self-interaction of the classical electromagnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 196-203
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a7/
%G ru
%F TMF_1976_27_2_a7
B. P. Kosyakov. Finite self-interaction of the classical electromagnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 2, pp. 196-203. http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a7/

[1] F. Rohrlich, Classical Charged Particles, Addison-Wesley, Mass., 1965 | MR | Zbl

[2] P. A. M. Dirac, Proc. Roy. Soc., A167 (1938), 148 | DOI

[3] C. Teitelboim, Phys. Rev., D1 (1970), 1572 ; D4 (1971), 345 ; P. A. Hogan, Nuovo Cim., B15 (1973), 136 ; Proc. Camb. Phil. Soc., 76 (1974), 359 ; A. O. Barut, Phys. Rev., D10 (1974), 3335 | MR | DOI | DOI | MR | MR

[4] T. S. Mo, C. H. Papas, Phys. Rev., D4 (1974), 3566

[5] G. V. Efimov, Problemy fiziki, EChAYa, 1 (1970), 223

[6] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, 1959 | MR

[7] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi oblasti, «Nauka», 1964 | MR

[8] I. V. Polubarinov, Preprint OIYaI R2-7532, Dubna, 1973 | Zbl

[9] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, 1956

[10] T. Erber, Fortschr. Physik, 9 (1961), 343 | DOI | MR | Zbl