Hamiltonian formalism of homogeneous cosmological model of type~IX with electromagnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 2, pp. 184-189

Voir la notice de l'article provenant de la source Math-Net.Ru

The Einstein–Maxwell equations for a homogeneous cosmological model of type IX with electromagnetic field are reduced to a Hamiltonian system with constraints. It is shown that the constraints are zero levels of integrals of the energy and the moments; an additional first integral is found. An investigation is made of the oscillatory regime of the behavior of solutions with diagonal metric and singlecomponent electromagnetic field near the cosmological singularity, and the differences between it and the analogous regime for vacuum solutions are pointed out.
@article{TMF_1976_27_2_a5,
     author = {O. I. Bogoyavlenskii},
     title = {Hamiltonian formalism of homogeneous cosmological model of {type~IX} with electromagnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {184--189},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a5/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Hamiltonian formalism of homogeneous cosmological model of type~IX with electromagnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 184
EP  - 189
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a5/
LA  - ru
ID  - TMF_1976_27_2_a5
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Hamiltonian formalism of homogeneous cosmological model of type~IX with electromagnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 184-189
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a5/
%G ru
%F TMF_1976_27_2_a5
O. I. Bogoyavlenskii. Hamiltonian formalism of homogeneous cosmological model of type~IX with electromagnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 2, pp. 184-189. http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a5/