Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov–Parasyuk–Hepp–Zimmermann method
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 38-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Bogolyubov–Parasyuk–Hepp regularization procedure in Zimmermann's formulation is applied to non-Abelian gauge theories with spontaneously broken symmetry. Ward identities for the Green's function are proved in a general gauge. Gauge invarianee of the elements of the $S$-matrix of physical particles follows from the Ward identities. The proof that the $S$-matrix is gauge invariant is considered in detail for a Yang–Mills massless field.
@article{TMF_1976_27_1_a3,
     author = {M. Z. Iofa and I. V. Tyutin},
     title = {Gauge invariance of spontaneously broken {non-Abelian} theories in the {Bogolyubov{\textendash}Parasyuk{\textendash}Hepp{\textendash}Zimmermann} method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {38--47},
     year = {1976},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a3/}
}
TY  - JOUR
AU  - M. Z. Iofa
AU  - I. V. Tyutin
TI  - Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov–Parasyuk–Hepp–Zimmermann method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 38
EP  - 47
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a3/
LA  - ru
ID  - TMF_1976_27_1_a3
ER  - 
%0 Journal Article
%A M. Z. Iofa
%A I. V. Tyutin
%T Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov–Parasyuk–Hepp–Zimmermann method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 38-47
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a3/
%G ru
%F TMF_1976_27_1_a3
M. Z. Iofa; I. V. Tyutin. Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov–Parasyuk–Hepp–Zimmermann method. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a3/

[1] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1973 | MR | Zbl

[2] W. Zimmermann, Commun. Math. Phys., 15 (1969), 208 | DOI | MR | Zbl

[3] J. Lowenstein, M. Weinstein, W. Zimmermann, Phys. Rev., 10D, 1854 ; (1974), 2500; J. Lowenstein, B. Schroer, Phys. Rev., 10D (1974), 2513 | MR

[4] I. V. Tyutin, Preprint FIAN No 39, 1975

[5] A. Rouet, Nucl. Phys., B68 (1974), 605 | DOI

[6] M. Gomes, J. Lowenstein, W. Zimmermann, Commun. Math. Phys., 39 (1974), 81 | DOI | MR

[7] W. Zimmermann, Lectures on Elementary Particles and Fields, Brandeis University Summer Institute, 1970; J. Lowenstein, Phys. Rev., 4D (1971), 2281 ; Lam Yuk-Ming, Phys. Rev., 6D, 2145; (1972), 2161 | MR

[8] W. Zimmermann, Ann. Phys., 77, 536 ; (1973), 570 | DOI | MR | DOI

[9] A. A. Slavnov, Preprint ITP-71-83E, Kiev, 1971; J. C. Taylor, Nucl Phys., B33 (1973), 436 | MR | Zbl

[10] R. E. Kallosh, I. V. Tyutin, YaF, 17 (1973), 190 | MR