Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov--Parasyuk--Hepp--Zimmermann method
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 38-47

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bogolyubov–Parasyuk–Hepp regularization procedure in Zimmermann's formulation is applied to non-Abelian gauge theories with spontaneously broken symmetry. Ward identities for the Green's function are proved in a general gauge. Gauge invarianee of the elements of the $S$-matrix of physical particles follows from the Ward identities. The proof that the $S$-matrix is gauge invariant is considered in detail for a Yang–Mills massless field.
@article{TMF_1976_27_1_a3,
     author = {M. Z. Iofa and I. V. Tyutin},
     title = {Gauge invariance of spontaneously broken {non-Abelian} theories in the {Bogolyubov--Parasyuk--Hepp--Zimmermann} method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {38--47},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a3/}
}
TY  - JOUR
AU  - M. Z. Iofa
AU  - I. V. Tyutin
TI  - Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov--Parasyuk--Hepp--Zimmermann method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 38
EP  - 47
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a3/
LA  - ru
ID  - TMF_1976_27_1_a3
ER  - 
%0 Journal Article
%A M. Z. Iofa
%A I. V. Tyutin
%T Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov--Parasyuk--Hepp--Zimmermann method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 38-47
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a3/
%G ru
%F TMF_1976_27_1_a3
M. Z. Iofa; I. V. Tyutin. Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov--Parasyuk--Hepp--Zimmermann method. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a3/