On~uncertainty relations for vector-valued operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 130-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Just as the Heisenberg uncertainty principle for one-dimensional quantum-mechanical quantities can be expressed in terms of a variance by means of Weyl's inequality, for multidimensional quantities this principle can be expressed in terms of generalized variances and covariation matrices by means of inequalities analogous to Weyl's. These inequalities are proved abstractly in this paper: not only for physical vector quantities but also for arbitrary vector-valued operators with commutting self-adjoint components.
@article{TMF_1976_27_1_a12,
     author = {A. L. Chistyakov},
     title = {On~uncertainty relations for vector-valued operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {130--134},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a12/}
}
TY  - JOUR
AU  - A. L. Chistyakov
TI  - On~uncertainty relations for vector-valued operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 130
EP  - 134
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a12/
LA  - ru
ID  - TMF_1976_27_1_a12
ER  - 
%0 Journal Article
%A A. L. Chistyakov
%T On~uncertainty relations for vector-valued operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 130-134
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a12/
%G ru
%F TMF_1976_27_1_a12
A. L. Chistyakov. On~uncertainty relations for vector-valued operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 130-134. http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a12/