On~the static conductivity of one-dimensional disordered systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 124-129

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if a one-dimensional disordered system is ergodie (conditions formulated below), the characteristic flmctions determining the conductivity have properties such that $\sigma(\omega)=0$ for $\omega=0$ ($\omega$ is the frequency of the external electric field). The connection between diffusion and the frequency dependence $\sigma(\omega)$ is investigated. Some questions associated with the density of energy levels in a random one-dimensional system are considered briefly.
@article{TMF_1976_27_1_a11,
     author = {Yu. A. Bychkov},
     title = {On~the static conductivity of one-dimensional disordered systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {124--129},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a11/}
}
TY  - JOUR
AU  - Yu. A. Bychkov
TI  - On~the static conductivity of one-dimensional disordered systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 124
EP  - 129
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a11/
LA  - ru
ID  - TMF_1976_27_1_a11
ER  - 
%0 Journal Article
%A Yu. A. Bychkov
%T On~the static conductivity of one-dimensional disordered systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 124-129
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a11/
%G ru
%F TMF_1976_27_1_a11
Yu. A. Bychkov. On~the static conductivity of one-dimensional disordered systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 124-129. http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a11/