On the static conductivity of one-dimensional disordered systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 124-129
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that if a one-dimensional disordered system is ergodie (conditions formulated below), the characteristic flmctions determining the conductivity have properties such that $\sigma(\omega)=0$ for $\omega=0$ ($\omega$ is the frequency of the external electric field). The connection between diffusion and the frequency dependence $\sigma(\omega)$ is investigated. Some questions associated with the density of energy levels in a random one-dimensional system are considered briefly.
@article{TMF_1976_27_1_a11,
author = {Yu. A. Bychkov},
title = {On~the static conductivity of one-dimensional disordered systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {124--129},
year = {1976},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a11/}
}
Yu. A. Bychkov. On the static conductivity of one-dimensional disordered systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 124-129. http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a11/
[1] N. F. Mott, W. D. Twoose, Adv. Phys., 10 (1961), 137 | DOI
[2] R. E. Borland, Proc. Roy. Soc., 274A (1963), 529 | DOI | Zbl
[3] Yu. A. Bychkov, ZhETF, 65 (1973), 427
[4] V. L. Berezinskii, ZhETF, 65 (1973), 1251
[5] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Gostekhizdat, 1957 | MR