Dynamical affine symmetry and covariant perturbation theory for gravitation
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 16-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A covariant perturbation theory is formulated for gravitation with the simplest reduction properties. The main features in the formulation are the choice of fundamental fields as the normal coordinates of the ten-dimensional space of the gravitational field itself and a division of the fields into classical and quantum fields in the generating functional over the geodesics of this space.
@article{TMF_1976_27_1_a1,
     author = {V. N. Pervushin},
     title = {Dynamical affine symmetry and covariant perturbation theory for gravitation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {16--23},
     year = {1976},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a1/}
}
TY  - JOUR
AU  - V. N. Pervushin
TI  - Dynamical affine symmetry and covariant perturbation theory for gravitation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 16
EP  - 23
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a1/
LA  - ru
ID  - TMF_1976_27_1_a1
ER  - 
%0 Journal Article
%A V. N. Pervushin
%T Dynamical affine symmetry and covariant perturbation theory for gravitation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 16-23
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a1/
%G ru
%F TMF_1976_27_1_a1
V. N. Pervushin. Dynamical affine symmetry and covariant perturbation theory for gravitation. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 1, pp. 16-23. http://geodesic.mathdoc.fr/item/TMF_1976_27_1_a1/

[1] L. D. Faddeev, V. N. Popov, UFN, 111 (1973), 427 | DOI | MR

[2] B. S. De Witt, Phys. Rev., 162, 1195 ; (1967), 1239 | DOI | DOI

[3] G. 't Hooft, M. Veltman, Preprint TH 1728-CERN, 1973

[4] A. B. Borisov, V. I. Ogievetskii, TMF, 21 (1974), 329

[5] J. Honerkamp, Nucl. Phys., B36 (1972), 130 ; G. Ecker, J. Honerkamp, Nucl. Phys., B62 (1973), 211 | DOI | DOI

[6] V. N. Pervushin, TMF, 22 (1975), 322 ; V. N. Pervushin, Preprint JINR E2-8009, Dubna, 1974

[7] V. N. Pervushin, Preprint JINR E275-40, Dubna, 1973

[8] G. V. Efimov, ZhETF, 44 (1963), 1207

[9] M. K. Volkov, Ann. Phys. (N. Y.), 49 (1968), 202 ; C. J. Icham, A. Salam, J. Strathdee, Phys. Rev., D3 (1971), 1805 | DOI | MR

[10] D. V. Volkov, Preprint ITF 69-75, Kiev, 1969 ; ЭЧАЯ, 4 (1973), 3 | MR

[11] G. 't Hooft, M. Veltman, Nucl. Phys., B50 (1972), 318 ; Р. Э. Каллош, И. В. Тютин, ЯФ, 17 (1974), 190 | DOI | MR | MR

[12] E. Kartan, Geometriya rimanovykh prostranstv, ONTI, 1936

[13] J. Honerkamp, Nucl. Phys., B46 (1972), 269 ; G. 't Hooft, Preprint CERN TH-1692, 1973 ; R. Kallosh, Nucl. Phys., B78 (1974), 293 | DOI | MR | DOI | MR

[14] I. Ya. Arefeva, A. A. Slavnov, L. D. Faddeev, TMF, 21 (1974), 311