Generalized uncertainty relations and efficient measurements in quantum systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 316-329 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider two variants of a quantum-statistical generalization of the Cramer–Rao inequality that establish an invariant lower bound on the mean square error of a generalized quantum measurement. In contrast to Helstrom's variant [1], the proposed complex variant of this inequality leads to a precise formulation of a generalized uncertainty principle for arbitrary states. A bound is found for the accuracy of estimating the parameters of canonical states and, in particular, the canonical parameters of a Lie group. It is shown that these bounds are globally attainable only for canonical states for which there exist effficient measurements and quasimeasurements.
@article{TMF_1976_26_3_a3,
     author = {V. P. Belavkin},
     title = {Generalized uncertainty relations and efficient measurements in quantum systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {316--329},
     year = {1976},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a3/}
}
TY  - JOUR
AU  - V. P. Belavkin
TI  - Generalized uncertainty relations and efficient measurements in quantum systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 316
EP  - 329
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a3/
LA  - ru
ID  - TMF_1976_26_3_a3
ER  - 
%0 Journal Article
%A V. P. Belavkin
%T Generalized uncertainty relations and efficient measurements in quantum systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 316-329
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a3/
%G ru
%F TMF_1976_26_3_a3
V. P. Belavkin. Generalized uncertainty relations and efficient measurements in quantum systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 316-329. http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a3/

[1] C. W. Helstrom, Phys. Lett., 25A (1967), 101 | DOI

[2] V. P. Belavkin, Zarubezhnaya radioelektronika, 5 (1975), 3 | MR

[3] V. P. Belavkin, Kand. diss., MGU, 1972

[4] R. L. Stratonovich, Stochastics, 1 (1973), 87 | DOI | MR | Zbl

[5] H. Yuen, M. Lax, Trans. IEEE, IT-19, 6 (1973), 740 | DOI | MR

[6] V. P. Belavkin, Stochastics, 1 (1975), 315 | DOI | MR | Zbl

[7] V. P. Belavkin, B. A. Grishanin, Problemy peredachi informatsii, 9:3 (1973), 44 | MR | Zbl

[8] V. P. Belavkin, Radiotekhnika i elektronika, 17, 12; (1972), 2527; 20 (1975), 6

[9] C. W. Helstrom, Int. J. of Theor. Phys., 8, 5 ; (1973), 361 ; 11 (1974), 357 | MR | DOI | DOI | MR

[10] V. P. Belavkin, Problems of control and information theory, 3 (1975), 3 | MR

[11] K. R. Rao, Lineinye statisticheskie metody, «Mir», 1968

[12] G. A. Zaitsev, Algebraicheskie problemy matematicheskoi fiziki, «Nauka», 1974 | MR