Generalized uncertainty relations and efficient measurements in quantum systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 316-329
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider two variants of a quantum-statistical generalization of the Cramer–Rao
inequality that establish an invariant lower bound on the mean square error of a generalized quantum measurement. In contrast to Helstrom's variant [1], the proposed
complex variant of this inequality leads to a precise formulation of a generalized
uncertainty principle for arbitrary states. A bound is found for the accuracy of estimating
the parameters of canonical states and, in particular, the canonical parameters of a Lie
group. It is shown that these bounds are globally attainable only for canonical states for
which there exist effficient measurements and quasimeasurements.
@article{TMF_1976_26_3_a3, author = {V. P. Belavkin}, title = {Generalized uncertainty relations and efficient measurements in quantum systems}, journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika}, pages = {316--329}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {1976}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a3/} }
TY - JOUR AU - V. P. Belavkin TI - Generalized uncertainty relations and efficient measurements in quantum systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 316 EP - 329 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a3/ LA - ru ID - TMF_1976_26_3_a3 ER -
V. P. Belavkin. Generalized uncertainty relations and efficient measurements in quantum systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 316-329. http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a3/