Spectral properties of bilocal operators in the expansion of a~product of local operators on the light cone
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 309-315

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the spectral properties of bilocal operators in the expansion of a product of operators on the cone in the Wilson–Zimmermann approach [1–4]. It is shown that the spectral condition and polynomial boundedness lead to analyticity of the matrix elements of the biloeal operators in coordinate space. A method is developed for separating out from the general expansion the operators in which the spectral properties of the bilocal operators can be fixed explicitly.
@article{TMF_1976_26_3_a2,
     author = {Yu. G. Shondin},
     title = {Spectral properties of bilocal operators in the expansion of a~product of local operators on the light cone},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {309--315},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a2/}
}
TY  - JOUR
AU  - Yu. G. Shondin
TI  - Spectral properties of bilocal operators in the expansion of a~product of local operators on the light cone
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 309
EP  - 315
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a2/
LA  - ru
ID  - TMF_1976_26_3_a2
ER  - 
%0 Journal Article
%A Yu. G. Shondin
%T Spectral properties of bilocal operators in the expansion of a~product of local operators on the light cone
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 309-315
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a2/
%G ru
%F TMF_1976_26_3_a2
Yu. G. Shondin. Spectral properties of bilocal operators in the expansion of a~product of local operators on the light cone. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 309-315. http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a2/