Spectral properties of bilocal operators in the expansion of a product of local operators on the light cone
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 309-315
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the spectral properties of bilocal operators in the expansion of a product of operators on the cone in the Wilson–Zimmermann approach [1–4]. It is shown that the spectral condition and polynomial boundedness lead to analyticity of the matrix elements of the biloeal operators in coordinate space. A method is developed for separating out from the general expansion the operators in which the spectral properties of the bilocal operators can be fixed explicitly.
@article{TMF_1976_26_3_a2,
author = {Yu. G. Shondin},
title = {Spectral properties of bilocal operators in the expansion of a~product of local operators on the light cone},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {309--315},
year = {1976},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a2/}
}
TY - JOUR AU - Yu. G. Shondin TI - Spectral properties of bilocal operators in the expansion of a product of local operators on the light cone JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 309 EP - 315 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a2/ LA - ru ID - TMF_1976_26_3_a2 ER -
Yu. G. Shondin. Spectral properties of bilocal operators in the expansion of a product of local operators on the light cone. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 309-315. http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a2/
[1] K. Wilson, Phys. Rev., 179 (1969), 1499 | DOI | MR
[2] K. Wilson, W. Zimmermann, Commun. Math. Phys., 24 (1972), 87 | DOI | MR | Zbl
[3] P. Otterson, W. Zimmermann, Commun. Math. Phys., 24 (1972), 107 | DOI | MR | Zbl
[4] W. Zimmermann, Lecture notes in phys., 17 (1973), 343 | DOI
[5] N. N. Bogolyubov, V. S. Vladimirov, A. N. Tavkhelidze, TMF, 12 (1972), 3 ; Б. И. Завьялов, ТМФ, 17 (1973), 178
[6] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, «Nauka», 1964 | MR
[7] Yu. G. Shondin, TMF, 26 (1976), 425 | Zbl