On~a~property of solutions of the wave equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 425-428

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider solutions of the wave equation in $S'(R_{n+1})$ ($n$ is odd) that become zero in the doubly connected region $\vert q^0\vert>\vert\widetilde q\vert+a$. We show that if a condition of sufficient decrease at infinity is imposed on the solution the solution also vanishes in the region $\vert q^0\vert\leqslant\vert\widetilde q\vert-a$.
@article{TMF_1976_26_3_a16,
     author = {Yu. G. Shondin},
     title = {On~a~property of solutions of the wave equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {425--428},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a16/}
}
TY  - JOUR
AU  - Yu. G. Shondin
TI  - On~a~property of solutions of the wave equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 425
EP  - 428
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a16/
LA  - ru
ID  - TMF_1976_26_3_a16
ER  - 
%0 Journal Article
%A Yu. G. Shondin
%T On~a~property of solutions of the wave equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 425-428
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a16/
%G ru
%F TMF_1976_26_3_a16
Yu. G. Shondin. On~a~property of solutions of the wave equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 425-428. http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a16/