On~a~property of solutions of the wave equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 425-428
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider solutions of the wave equation in $S'(R_{n+1})$ ($n$ is odd) that become zero
in the doubly connected region $\vert q^0\vert>\vert\widetilde q\vert+a$. We show that if a condition of sufficient decrease at infinity is imposed on the solution the solution also vanishes in the region $\vert q^0\vert\leqslant\vert\widetilde q\vert-a$.
@article{TMF_1976_26_3_a16,
author = {Yu. G. Shondin},
title = {On~a~property of solutions of the wave equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {425--428},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a16/}
}
Yu. G. Shondin. On~a~property of solutions of the wave equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 3, pp. 425-428. http://geodesic.mathdoc.fr/item/TMF_1976_26_3_a16/