Statistical description of the motion of particles trapped by a~nonlinear wave
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 2, pp. 234-245
Voir la notice de l'article provenant de la source Math-Net.Ru
In the framework of the Hamilton formalism, a nonlinear theory is developed for the self-consistent motion of particles trapped in the potential wells of a nonlinear periodic wave (“pencil-box” model). The effective potential of the binary nonlinear interaction of the particles is constructed and used to derive a kinetic equation of Fokker–Planck type. A study is made of the kinetics of the trapped particles in the ergodic layer near the separatrix and its influence on the general kinetics of all the trapped particles. The time of relaxation of the trapped particles to an equilibrium distribution is found.
@article{TMF_1976_26_2_a8,
author = {G. P. Berman and G. M. Zaslavsky},
title = {Statistical description of the motion of particles trapped by a~nonlinear wave},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {234--245},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a8/}
}
TY - JOUR AU - G. P. Berman AU - G. M. Zaslavsky TI - Statistical description of the motion of particles trapped by a~nonlinear wave JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 234 EP - 245 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a8/ LA - ru ID - TMF_1976_26_2_a8 ER -
G. P. Berman; G. M. Zaslavsky. Statistical description of the motion of particles trapped by a~nonlinear wave. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 2, pp. 234-245. http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a8/