Statistical description of the motion of particles trapped by a~nonlinear wave
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 2, pp. 234-245

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the Hamilton formalism, a nonlinear theory is developed for the self-consistent motion of particles trapped in the potential wells of a nonlinear periodic wave (“pencil-box” model). The effective potential of the binary nonlinear interaction of the particles is constructed and used to derive a kinetic equation of Fokker–Planck type. A study is made of the kinetics of the trapped particles in the ergodic layer near the separatrix and its influence on the general kinetics of all the trapped particles. The time of relaxation of the trapped particles to an equilibrium distribution is found.
@article{TMF_1976_26_2_a8,
     author = {G. P. Berman and G. M. Zaslavsky},
     title = {Statistical description of the motion of particles trapped by a~nonlinear wave},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--245},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a8/}
}
TY  - JOUR
AU  - G. P. Berman
AU  - G. M. Zaslavsky
TI  - Statistical description of the motion of particles trapped by a~nonlinear wave
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 234
EP  - 245
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a8/
LA  - ru
ID  - TMF_1976_26_2_a8
ER  - 
%0 Journal Article
%A G. P. Berman
%A G. M. Zaslavsky
%T Statistical description of the motion of particles trapped by a~nonlinear wave
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 234-245
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a8/
%G ru
%F TMF_1976_26_2_a8
G. P. Berman; G. M. Zaslavsky. Statistical description of the motion of particles trapped by a~nonlinear wave. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 2, pp. 234-245. http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a8/