Finite-particle approximations of a local field and the problem of local saturation
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 2, pp. 175-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the problem of approximating a nontrivial field by finite polynomials in the free fields. This problem, like the well-known problem of the local saturation of the matrix elements of the commutator of fields, reduces to the solution of a finite system of equations for the $r$-functions (nondiagonal matrix elements of the Heisenberg current). This corresponds to a definite truncation (with respect to the particle number) of the well-known infinite system of axiomatic equations for the $r$-functions of local quantum field theory.
@article{TMF_1976_26_2_a3,
     author = {B. L. Voronov and I. F. Skirko},
     title = {Finite-particle approximations of a~local field and the problem of local saturation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {175--187},
     year = {1976},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a3/}
}
TY  - JOUR
AU  - B. L. Voronov
AU  - I. F. Skirko
TI  - Finite-particle approximations of a local field and the problem of local saturation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 175
EP  - 187
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a3/
LA  - ru
ID  - TMF_1976_26_2_a3
ER  - 
%0 Journal Article
%A B. L. Voronov
%A I. F. Skirko
%T Finite-particle approximations of a local field and the problem of local saturation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 175-187
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a3/
%G ru
%F TMF_1976_26_2_a3
B. L. Voronov; I. F. Skirko. Finite-particle approximations of a local field and the problem of local saturation. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 2, pp. 175-187. http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a3/

[1] B. V. Medvedev, M. K. Polivanov, Mezhdunarodnaya zimnyaya shkola po teoreticheskoi fizike, t. 1, Dubna, 1964, 77

[2] V. Ya. Fainberg, Mezhdunarodnaya zimnyaya shkola po teoreticheskoi fizike, t. 1, Dubna, 1964, 140

[3] A. Völkel, Commun. Math. Phys., 5 (1967), 57 | DOI | MR | Zbl

[4] B. Stech, Z. Phys., 239 (1970), 387 | DOI

[5] B. Stech, Proceeding of Simposium on Basic Questions in Elementary Particle Physics, Munich, 1971, 227

[6] H. Araki, R. Haag, B. Schroer, Nuovo Cim., 19 (1961), 90 ; K. Bardakci, E. Sudarshan, Nuovo Cim., 21 (1961), 722 ; A. Wightman, Theor. Phys., Lectures presented at seminar (Trieste, 1962), IAEA, Vienna, 1963 | DOI | MR | Zbl | DOI | MR | MR

[7] V. Ya. Fainberg, ZhETF, 40 (1961), 1758 | MR | Zbl

[8] B. L. Voronov, Kand. diss., FIAN, 1969

[9] B. L. Voronov, I. F. Skirko, Preprint FIAN No 143, 1971 | Zbl

[10] B. L. Voronov, I. F. Skirko, Preprint FIAN No 138, 1970

[11] H. Dahmen, K. Rothe, B. Stech, Phys. Lett., B35 (1971), 335 | DOI

[12] D. G. Fakirov, Preprinty OIYaI, R2-7710; Р2-7660, Дубна, 1974

[13] D. G. Fakirov, N. Marinescu, Z. Phys., 247 (1971), 421 | DOI

[14] H. Dahmen, H. Rothe, K. Rothe, Nuovo Cim., 8A (1972), 416 | DOI

[15] H. Dahmen, K. Rothe, H. Rothe, Nuovo Cim., 8A (1972), 416 | DOI

[16] H. Dahmen, K. Rothe, B. Stech, Phys. Lett., B34 (1971), 83 | DOI

[17] G. Barton, Dispersionnye metody v teorii polya, «Mir», 1968

[18] N. N. Bogolyubov, V. S. Vladimirov, Nauchnye doklady vysshei shkoly (fiz.- matem. nauki), 3 (1958), 26

[19] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Fizmatgiz, 1962 | MR