Finite-particle approximations of a~local field and the problem of local saturation
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 2, pp. 175-187

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the problem of approximating a nontrivial field by finite polynomials in the free fields. This problem, like the well-known problem of the local saturation of the matrix elements of the commutator of fields, reduces to the solution of a finite system of equations for the $r$-functions (nondiagonal matrix elements of the Heisenberg current). This corresponds to a definite truncation (with respect to the particle number) of the well-known infinite system of axiomatic equations for the $r$-functions of local quantum field theory.
@article{TMF_1976_26_2_a3,
     author = {B. L. Voronov and I. F. Skirko},
     title = {Finite-particle approximations of a~local field and the problem of local saturation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {175--187},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a3/}
}
TY  - JOUR
AU  - B. L. Voronov
AU  - I. F. Skirko
TI  - Finite-particle approximations of a~local field and the problem of local saturation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 175
EP  - 187
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a3/
LA  - ru
ID  - TMF_1976_26_2_a3
ER  - 
%0 Journal Article
%A B. L. Voronov
%A I. F. Skirko
%T Finite-particle approximations of a~local field and the problem of local saturation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 175-187
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a3/
%G ru
%F TMF_1976_26_2_a3
B. L. Voronov; I. F. Skirko. Finite-particle approximations of a~local field and the problem of local saturation. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 2, pp. 175-187. http://geodesic.mathdoc.fr/item/TMF_1976_26_2_a3/