Method of calculating matrix elements and cross sections with wave functions with definite angular momentum
Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 1, pp. 42-47
Voir la notice de l'article provenant de la source Math-Net.Ru
A method is proposed for calculating the matrix elements and cross sections with a wave function with definite angular momentum. The method consists of calculating the matrix element in which the function with definite angular momentum is replaced by the function $\exp(i\mathbf k\mathbf r-\eta r)$ with subsequent differentiation of the result with respect to $\eta$ and taking of the gradients with respect to $\mathbf k$ in accordance with $\text{Eq}$.(5). The method is illustrated for the example of the calculation of the photoeffect cross section from an arbitrary shell without the dipole approximation.
@article{TMF_1976_26_1_a3,
author = {V. S. Polikanov},
title = {Method of calculating matrix elements and cross sections with wave functions with definite angular momentum},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {42--47},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_26_1_a3/}
}
TY - JOUR AU - V. S. Polikanov TI - Method of calculating matrix elements and cross sections with wave functions with definite angular momentum JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 42 EP - 47 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1976_26_1_a3/ LA - ru ID - TMF_1976_26_1_a3 ER -
%0 Journal Article %A V. S. Polikanov %T Method of calculating matrix elements and cross sections with wave functions with definite angular momentum %J Teoretičeskaâ i matematičeskaâ fizika %D 1976 %P 42-47 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1976_26_1_a3/ %G ru %F TMF_1976_26_1_a3
V. S. Polikanov. Method of calculating matrix elements and cross sections with wave functions with definite angular momentum. Teoretičeskaâ i matematičeskaâ fizika, Tome 26 (1976) no. 1, pp. 42-47. http://geodesic.mathdoc.fr/item/TMF_1976_26_1_a3/