Quantum particle in a~one-dimensional deformed lattice. Estimates of the gaps in the spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 344-357

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the potential of oscillating lattice at fixed moment of time is a quasi-periodical function. Stationary states of quantum particle in quasi-periodical potential satisfy the generalized Floquet–Bloch theorem and can be characterized by the quasi-momentum which is connected with the density of states exactly in the same way as in the case of the particle in a purely periodical potential. If the quasi-momentum satisfies the generalized Bragg–Woolfe conditions, the spectrum may include the lacunae (forbidden zones), for the sizes of which the estimates are given.
@article{TMF_1975_25_3_a5,
     author = {E. D. Belokolos},
     title = {Quantum particle in a~one-dimensional deformed lattice. {Estimates} of the gaps in the spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--357},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/}
}
TY  - JOUR
AU  - E. D. Belokolos
TI  - Quantum particle in a~one-dimensional deformed lattice. Estimates of the gaps in the spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 344
EP  - 357
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/
LA  - ru
ID  - TMF_1975_25_3_a5
ER  - 
%0 Journal Article
%A E. D. Belokolos
%T Quantum particle in a~one-dimensional deformed lattice. Estimates of the gaps in the spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 344-357
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/
%G ru
%F TMF_1975_25_3_a5
E. D. Belokolos. Quantum particle in a~one-dimensional deformed lattice. Estimates of the gaps in the spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 344-357. http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/