Quantum particle in a one-dimensional deformed lattice. Estimates of the gaps in the spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 344-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the potential of oscillating lattice at fixed moment of time is a quasi-periodical function. Stationary states of quantum particle in quasi-periodical potential satisfy the generalized Floquet–Bloch theorem and can be characterized by the quasi-momentum which is connected with the density of states exactly in the same way as in the case of the particle in a purely periodical potential. If the quasi-momentum satisfies the generalized Bragg–Woolfe conditions, the spectrum may include the lacunae (forbidden zones), for the sizes of which the estimates are given.
@article{TMF_1975_25_3_a5,
     author = {E. D. Belokolos},
     title = {Quantum particle in a~one-dimensional deformed lattice. {Estimates} of the gaps in the spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--357},
     year = {1975},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/}
}
TY  - JOUR
AU  - E. D. Belokolos
TI  - Quantum particle in a one-dimensional deformed lattice. Estimates of the gaps in the spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 344
EP  - 357
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/
LA  - ru
ID  - TMF_1975_25_3_a5
ER  - 
%0 Journal Article
%A E. D. Belokolos
%T Quantum particle in a one-dimensional deformed lattice. Estimates of the gaps in the spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 344-357
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/
%G ru
%F TMF_1975_25_3_a5
E. D. Belokolos. Quantum particle in a one-dimensional deformed lattice. Estimates of the gaps in the spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 344-357. http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/

[1] M. V. Romerio, J. Math. Phys., 12 (1971), 552 | DOI | MR

[2] M. Burnat, A. Palczewski, Bull. Acad. Pol. Sci., Ser. math., astron. et phys., 21 (1973), 917 | MR | Zbl

[3] M. A. Shubin, Funkts. analiz, 9 (1975), 89 | Zbl

[4] E. D. Belokolos, Preprint ITF AN USSR-75-4R, Kiev, 1975

[5] B. M. Levitan, Pochti-periodicheskie funktsii, GITTL, 1953 | MR

[6] J. M. Ziman, Electrons and phonons, Clarendon Press, Oxford ; Dzh. Zaiman, Elektrony i fonony, IL, 1962 | Zbl

[7] V. I. Smirnov, Kurs vysshei matematiki, t. 5, GIFML, 1959 | MR

[8] N. N. Bogolyubov, Yu. A. Mitropolskii, A. M. Samoilenko, Metod uskorennoi skhodimosti v nelineinoi mekhanike, «Naukova dumka», Kiev, 1969 | MR

[9] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, GIFML, 1963 | MR

[10] E. I. Dinaburg, Ya. G. Sinai, Funkts. analiz, 9:4 (1975), 8 | MR | Zbl