Quantum particle in a~one-dimensional deformed lattice. Estimates of the gaps in the spectrum
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 344-357
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the potential of oscillating lattice at fixed moment of time is a quasi-periodical function. Stationary states of quantum particle in quasi-periodical
potential satisfy the generalized Floquet–Bloch theorem and can be characterized by
the quasi-momentum which is connected with the density of states exactly in the same
way as in the case of the particle in a purely periodical potential. If the quasi-momentum
satisfies the generalized Bragg–Woolfe conditions, the spectrum may include
the lacunae (forbidden zones), for the sizes of which the estimates are given.
			
            
            
            
          
        
      @article{TMF_1975_25_3_a5,
     author = {E. D. Belokolos},
     title = {Quantum particle in a~one-dimensional deformed lattice. {Estimates} of the gaps in the spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--357},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/}
}
                      
                      
                    TY - JOUR AU - E. D. Belokolos TI - Quantum particle in a~one-dimensional deformed lattice. Estimates of the gaps in the spectrum JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 344 EP - 357 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/ LA - ru ID - TMF_1975_25_3_a5 ER -
E. D. Belokolos. Quantum particle in a~one-dimensional deformed lattice. Estimates of the gaps in the spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 344-357. http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a5/
