Asymptotic behavior of form factors and invariant description of the spatial structure of particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 313-326 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Invariant description of the particle spatial distribution is introduced on the basis of relativistic configurational representation obtained with the aid of expansions over unitary representations of the Lorentz group. A formula which gives the correct “almost dipole” asymptotical behaviour of the proton form-factor $\displaystyle{F_P(t)\to\frac{\ln |t|/M^2}{t^2}}$ at large $-t$ is obtained.
@article{TMF_1975_25_3_a2,
     author = {N. B. Skachkov},
     title = {Asymptotic behavior of form factors and invariant description of the spatial structure of particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {313--326},
     year = {1975},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/}
}
TY  - JOUR
AU  - N. B. Skachkov
TI  - Asymptotic behavior of form factors and invariant description of the spatial structure of particles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 313
EP  - 326
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/
LA  - ru
ID  - TMF_1975_25_3_a2
ER  - 
%0 Journal Article
%A N. B. Skachkov
%T Asymptotic behavior of form factors and invariant description of the spatial structure of particles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 313-326
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/
%G ru
%F TMF_1975_25_3_a2
N. B. Skachkov. Asymptotic behavior of form factors and invariant description of the spatial structure of particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 313-326. http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/

[1] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, Nuovo Cim., 55A (1968), 233 ; ЭЧАЯ, 2, No 3, Атомиздат, 1972, 635 | DOI

[2] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, YaF, 9 (1969), 219 | MR

[3] M. I. Pavkovich, Phys. Rev., 4D (1971), 1724

[4] N. B. Skachkov, Soobschenie OIYaI E2-7890, Dubna, 1974

[5] Yu. M. Shirokov, ZhETF, 21 (1951), 748; 33 (1957), 861 | Zbl

[6] A. A. Cheshkov, Yu. M. Shirokov, ZhETF, 44 (1963), 1982 | MR

[7] V. P. Kozhevnikov, V. E. Troitskii, S. V. Trubnikov, Yu. M. Shirokov, TMF, 10 (1972), 47

[8] N. B. Skachkov, Soobschenie OIYaI E2-7333, Dubna, 1974; ТМФ, 22 (1975), 213

[9] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1973 | MR | Zbl

[10] D. I. Blokhintsev, Prostranstvo i vremya v mikromire, «Nauka», 1970 | Zbl

[11] I. M. Gelfand, M. A. Naimark, Izv. AN SSSR, ser. mat., 11 (1947), 411 | MR | Zbl

[12] M. A. Naimark, Lineinye predstavleniya gruppy Lorentsa, Fizmatgiz, 1958 | MR

[13] I. S. Shapiro, DAN SSSR, 106 (1956), 647 ; ЖЭТФ, 43 (1962), 1727; Phys. Lett., 1 (1962), 253 ; А. З. Долгинов, ЖЭТФ, 30 (1956), 746 ; А. З. Долгинов, Н. Н. Топтыгин, ЖЭТФ, 37 (1959), 1441 ; Н. Я. Виленкин, Я. А. Смородинский, ЖЭТФ, 46 (1964), 1793 | Zbl | DOI | MR | Zbl | MR | Zbl | MR | Zbl | MR

[14] T. D. Newton, E. P. Wigner, Rev. Mod. Phys., 21 (1949), 400 | DOI | Zbl

[15] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Obobschennye funktsii, t. 5, Fizmatgiz, 1962 | MR

[16] N. B. Skachkov, TMF, 5 (1970), 57

[17] A. V. Efremov, ZhETF, 53 (1967), 732

[18] W. Ruhl, Nuovo. Cim., 68A (1970), 213 | DOI | MR

[19] N. Zovko, Acta. Phys. Austr., 36 (1972), 354; S. Blatnik, N. Zovko, Acta. Phys. Austr., 39 (1974), 62

[20] T. Massam, A. Zichichi, Nuovo Cim., 43A (1966), 1137 | DOI

[21] S. B. Gerasimov, Preprint OIYaI R-2439, Dubna, 1965; Препринт ОИЯИ Р-2619, Дубна, 1966 | Zbl

[22] A. L. Light, A. Pagnamenta, Phys. Rev., D2 (1970), 1150