Asymptotic behavior of form factors and invariant description of the spatial structure of particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 313-326

Voir la notice de l'article provenant de la source Math-Net.Ru

Invariant description of the particle spatial distribution is introduced on the basis of relativistic configurational representation obtained with the aid of expansions over unitary representations of the Lorentz group. A formula which gives the correct “almost dipole” asymptotical behaviour of the proton form-factor $\displaystyle{F_P(t)\to\frac{\ln |t|/M^2}{t^2}}$ at large $-t$ is obtained.
@article{TMF_1975_25_3_a2,
     author = {N. B. Skachkov},
     title = {Asymptotic behavior of form factors and invariant description of the spatial structure of particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {313--326},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/}
}
TY  - JOUR
AU  - N. B. Skachkov
TI  - Asymptotic behavior of form factors and invariant description of the spatial structure of particles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 313
EP  - 326
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/
LA  - ru
ID  - TMF_1975_25_3_a2
ER  - 
%0 Journal Article
%A N. B. Skachkov
%T Asymptotic behavior of form factors and invariant description of the spatial structure of particles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 313-326
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/
%G ru
%F TMF_1975_25_3_a2
N. B. Skachkov. Asymptotic behavior of form factors and invariant description of the spatial structure of particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 313-326. http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/