Asymptotic behavior of form factors and invariant description of the spatial structure of particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 313-326
Voir la notice de l'article provenant de la source Math-Net.Ru
Invariant description of the particle spatial distribution is introduced on the basis
of relativistic configurational representation obtained with the aid of expansions
over unitary representations of the Lorentz group. A formula which gives the correct
“almost dipole” asymptotical behaviour of the proton form-factor $\displaystyle{F_P(t)\to\frac{\ln |t|/M^2}{t^2}}$
at large $-t$ is obtained.
@article{TMF_1975_25_3_a2,
author = {N. B. Skachkov},
title = {Asymptotic behavior of form factors and invariant description of the spatial structure of particles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {313--326},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/}
}
TY - JOUR AU - N. B. Skachkov TI - Asymptotic behavior of form factors and invariant description of the spatial structure of particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 313 EP - 326 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/ LA - ru ID - TMF_1975_25_3_a2 ER -
%0 Journal Article %A N. B. Skachkov %T Asymptotic behavior of form factors and invariant description of the spatial structure of particles %J Teoretičeskaâ i matematičeskaâ fizika %D 1975 %P 313-326 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/ %G ru %F TMF_1975_25_3_a2
N. B. Skachkov. Asymptotic behavior of form factors and invariant description of the spatial structure of particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 313-326. http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a2/