Nonstationary perturbation theory for a degenerate discrete level
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 414-418
Cet article a éte moissonné depuis la source Math-Net.Ru
Asymptotical representations is constructed for evolution operator $S(0,-T)P$ at $T\to\infty$ regularized by means of the substitution $H_0\to H_0-i\varepsilon P'$ [1] (non-adiabatic regularisation which does not depend: on time). It is shown that $S(0,-T)P=\Omega\exp (-iQT)R_0+O(e^{-\varepsilon T})$, $Q$ and $\Omega$ being finite operators not depending of $T$ and regular in the neighbourhood $\varepsilon=0$. $Q$ can be interpreted as secular operator and $Q$ as wave operator.
@article{TMF_1975_25_3_a12,
author = {A. L. Kitanin},
title = {Nonstationary perturbation theory for a degenerate discrete level},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {414--418},
year = {1975},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a12/}
}
A. L. Kitanin. Nonstationary perturbation theory for a degenerate discrete level. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 414-418. http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a12/