Axiomatics of general Hamiltonian theories including classical and quantum ones as particular cases
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 307-312
Cet article a éte moissonné depuis la source Math-Net.Ru
The set of axioms of the hamiltonian theory is constructed in the form which is valid for classical and quantum theories as well. These axioms define the algebra with two multiplication operations called the free hamiltonian algebra. Classical and quantum theories are derived as factor algebras corresponding to different equivalence relations. The axiomatics admits essentially new hamiltonian theories with the nonassociative multiplication of the observables.
@article{TMF_1975_25_3_a1,
author = {Yu. M. Shirokov},
title = {Axiomatics of general {Hamiltonian} theories including classical and quantum ones as particular cases},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {307--312},
year = {1975},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a1/}
}
TY - JOUR AU - Yu. M. Shirokov TI - Axiomatics of general Hamiltonian theories including classical and quantum ones as particular cases JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 307 EP - 312 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a1/ LA - ru ID - TMF_1975_25_3_a1 ER -
Yu. M. Shirokov. Axiomatics of general Hamiltonian theories including classical and quantum ones as particular cases. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 307-312. http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a1/
[1] P. Kon, Universalnaya algebra, «Mir», 1968 ; А. И. Мальцев, Алгебраические системы, «Наука», 1970 | MR | MR
[2] E. Grgin, A. Petersen, J. Math. Pys., 15 (1974), 764 | DOI | MR | Zbl
[3] K. Godbiion, Differentsialnaya geometriya i analiticheskaya mekhanika, «Mir», 1973
[4] R. Hermann, Lie Algebras and Quantum Mechanics, New York, 1970 | MR