Axiomatics of general Hamiltonian theories including classical and quantum ones as particular cases
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 307-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The set of axioms of the hamiltonian theory is constructed in the form which is valid for classical and quantum theories as well. These axioms define the algebra with two multiplication operations called the free hamiltonian algebra. Classical and quantum theories are derived as factor algebras corresponding to different equivalence relations. The axiomatics admits essentially new hamiltonian theories with the nonassociative multiplication of the observables.
@article{TMF_1975_25_3_a1,
     author = {Yu. M. Shirokov},
     title = {Axiomatics of general {Hamiltonian} theories including classical and quantum ones as particular cases},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {307--312},
     year = {1975},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a1/}
}
TY  - JOUR
AU  - Yu. M. Shirokov
TI  - Axiomatics of general Hamiltonian theories including classical and quantum ones as particular cases
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 307
EP  - 312
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a1/
LA  - ru
ID  - TMF_1975_25_3_a1
ER  - 
%0 Journal Article
%A Yu. M. Shirokov
%T Axiomatics of general Hamiltonian theories including classical and quantum ones as particular cases
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 307-312
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a1/
%G ru
%F TMF_1975_25_3_a1
Yu. M. Shirokov. Axiomatics of general Hamiltonian theories including classical and quantum ones as particular cases. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 3, pp. 307-312. http://geodesic.mathdoc.fr/item/TMF_1975_25_3_a1/

[1] P. Kon, Universalnaya algebra, «Mir», 1968 ; А. И. Мальцев, Алгебраические системы, «Наука», 1970 | MR | MR

[2] E. Grgin, A. Petersen, J. Math. Pys., 15 (1974), 764 | DOI | MR | Zbl

[3] K. Godbiion, Differentsialnaya geometriya i analiticheskaya mekhanika, «Mir», 1973

[4] R. Hermann, Lie Algebras and Quantum Mechanics, New York, 1970 | MR