One-particle green s function in the anisotropic Heisenberg model
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 2, pp. 196-212

Voir la notice de l'article provenant de la source Math-Net.Ru

The matrix Green function is studied which is constructed in terms of the Pauli operators and describes the transversal component of the dynamic susceptibility tensor of the anisotropic Heisenberg ferromagnet with spin 1/2 in the transversal and longitudinal external magnetic field. Renormalised magnon spectrum is obtained in the generalised Hartree–Fock approximation (with the damping not taken into account) and phase boundary on the plane “magnetic field – temperature” is evaluated. It is shown that the contribution of the integral term must be taken into account for the fulfillment of the symmetry conditions and the Goldstone–Bogoliubov theorem in the case of the “easy plane” model.
@article{TMF_1975_25_2_a4,
     author = {Yu. G. Rudoi and Yu. A. Tserkovnikov},
     title = {One-particle green s function in the anisotropic {Heisenberg} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {196--212},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a4/}
}
TY  - JOUR
AU  - Yu. G. Rudoi
AU  - Yu. A. Tserkovnikov
TI  - One-particle green s function in the anisotropic Heisenberg model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 196
EP  - 212
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a4/
LA  - ru
ID  - TMF_1975_25_2_a4
ER  - 
%0 Journal Article
%A Yu. G. Rudoi
%A Yu. A. Tserkovnikov
%T One-particle green s function in the anisotropic Heisenberg model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 196-212
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a4/
%G ru
%F TMF_1975_25_2_a4
Yu. G. Rudoi; Yu. A. Tserkovnikov. One-particle green s function in the anisotropic Heisenberg model. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 2, pp. 196-212. http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a4/