Exactly solvable model of Bose gas with impurity
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 2, pp. 275-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The one-dimensional system consisting of $N-1$ identical particles (bosons) and one “impurity” particle is considered. The equation for wave numbers $\{k\}$ defining the energy of the system is obtained. The limiting case of infinitely strong repulsion between Bose-particles is investigated.
@article{TMF_1975_25_2_a12,
     author = {G. E. Gurgenishvili and G. A. Kharadze and L. A. Chobanian},
     title = {Exactly solvable model of {Bose} gas with impurity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {275--279},
     year = {1975},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a12/}
}
TY  - JOUR
AU  - G. E. Gurgenishvili
AU  - G. A. Kharadze
AU  - L. A. Chobanian
TI  - Exactly solvable model of Bose gas with impurity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 275
EP  - 279
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a12/
LA  - ru
ID  - TMF_1975_25_2_a12
ER  - 
%0 Journal Article
%A G. E. Gurgenishvili
%A G. A. Kharadze
%A L. A. Chobanian
%T Exactly solvable model of Bose gas with impurity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 275-279
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a12/
%G ru
%F TMF_1975_25_2_a12
G. E. Gurgenishvili; G. A. Kharadze; L. A. Chobanian. Exactly solvable model of Bose gas with impurity. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 2, pp. 275-279. http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a12/

[1] E. Lieb, W. Liniger, Phys. Rev., 130 (1963), 1605 | DOI | MR | Zbl

[2] M. Gaudin, Phys. Lett., A24 (1967), 55 | DOI

[3] C. Yang, Phys. Rev. Lett., 19 (1967), 1312 | DOI | MR | Zbl

[4] H. Bethe, Z. Physik, 71 (1931), 205 | DOI

[5] J. McGuire, J. Math. Phys., 6 (1965), 432 | DOI | MR | Zbl

[6] M. Girardeau, J. Math. Phys., 1 (1960), 516 | DOI | MR | Zbl

[7] J. McGuire, J. Math. Phys., 7 (1966), 123 | DOI | MR