Inverse Higgs effect in nonlinear realizations
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 2, pp. 164-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In theories with nonlinearly realised symmetry it is possible in a number of cases to eliminate some initial Goldstone and gauge fields by means of putting appropriate Cartan forms equal to zero. This is called the inverse Higgs phenomenon. We give a general treatment of the inverse Higgs phenomenon for gauge and space-time symmetries and consider four instructive examples which are the elimination of unessential gauge fields in chiral symmetry and in non-linearly realised supersymmetry and also the elimination of unessential Goldstone fields in the spontaneously broken conformal and projective symmetries.
@article{TMF_1975_25_2_a1,
     author = {E. A. Ivanov and V. I. Ogievetskii},
     title = {Inverse {Higgs} effect in nonlinear realizations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {164--177},
     year = {1975},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a1/}
}
TY  - JOUR
AU  - E. A. Ivanov
AU  - V. I. Ogievetskii
TI  - Inverse Higgs effect in nonlinear realizations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 164
EP  - 177
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a1/
LA  - ru
ID  - TMF_1975_25_2_a1
ER  - 
%0 Journal Article
%A E. A. Ivanov
%A V. I. Ogievetskii
%T Inverse Higgs effect in nonlinear realizations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 164-177
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a1/
%G ru
%F TMF_1975_25_2_a1
E. A. Ivanov; V. I. Ogievetskii. Inverse Higgs effect in nonlinear realizations. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 2, pp. 164-177. http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a1/

[1] P. W. Higgs, Phys. Rev., 145 (1966), 1156 | DOI | MR

[2] A. A. Migdal, A. M. Polyakov, ZhETF, 51 (1966), 135

[3] T. W. Kibble, Phys. Rev., 155 (1967), 1554 | DOI

[4] S. Coleman, J. Wess, B. Zumino, Phys. Rev., 177 (1969), 2239 | DOI

[5] A. Salam, J. Strathdee, Phys. Rev., 184 (1969), 1750 | DOI | MR

[6] C. Isham, A. Salam, J. Strathdee, Ann. Phys. (N. Y.), 62 (1971), 98 | DOI | MR | Zbl

[7] D. V. Volkov, EChAYa, 4 (1973), 3 | MR

[8] V. I. Ogievetsky, Proceedings of X-th Winter School of Theoretical Physics in Karpacz, v. 1, Wroclaw, 1974, 117 | MR

[9] K. Kawarabayashi, S. Kitakado, Preprint, Kyoto, 1968; K. Kawarabayashi, Lectures in Theor. Phys., v. XI-A, pt. 1, Interscience, New York, 1969, 227

[10] A. B. Borisov, V. I. Ogievetsky, Preprint JINR E2-7684, Dubna, 1974

[11] S. Gasiorowicz, D. A. Geffen, Rev. Mod. Phys., 41 (1969), 531 | DOI | MR

[12] D. V. Volkov, V. P. Akulov, Pisma v ZhETF, 16 (1972), 621; препринт ИТФ 73-51Р, Киев, 1973; ТМФ, 18 (1974), 39 ; D. V. Volkov, V. P. Akulov, Phys. Lett., 46B (1973), 109 | MR | DOI

[13] D. V. Volkov, V. A. Soroka, Pisma v ZhETF, 18 (1973), 529; ТМФ, 20 (1974), 291

[14] C. G. Callan, S. Coleman, R. Jackiw, Ann. Phys., 59 (1970), 42 | DOI | MR | Zbl

[15] T. D. Lee, S. Weinberg, B. Zumino, Phys. Rev. Lett., 18 (1967), 1029 | DOI

[16] K. Kawarabayashi, M. Suzuki, Phys. Rev. Lett., 16 (1966), 255 | DOI | MR

[17] S. Adler, R. Dashen, Algebry tokov i ikh primenenie v fizike chastits, «Mir», 1970 | MR

[18] D. A. Geffen, Phys. Rev. Lett., 19 (1967), 770 | DOI