On the proof that the $S$ matrix is unitary
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 1, pp. 20-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Formal proof of the unitarity of the $S$-matrix in the functional form is gilven. The following assertion is proved: if in the perturbation theory the intermediate regularisation is introduced by means of the propagators of vitrual particles and the finite limit when the regularisation is taken off, exists, then the limiting $S$-matrix is unitary.
@article{TMF_1975_25_1_a2,
     author = {G. V. Efimov},
     title = {On the proof that the $S$ matrix is unitary},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {20--29},
     year = {1975},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a2/}
}
TY  - JOUR
AU  - G. V. Efimov
TI  - On the proof that the $S$ matrix is unitary
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 20
EP  - 29
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a2/
LA  - ru
ID  - TMF_1975_25_1_a2
ER  - 
%0 Journal Article
%A G. V. Efimov
%T On the proof that the $S$ matrix is unitary
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 20-29
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a2/
%G ru
%F TMF_1975_25_1_a2
G. V. Efimov. On the proof that the $S$ matrix is unitary. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 1, pp. 20-29. http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a2/

[1] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1973 | MR | Zbl

[2] D. A. Slavnov, Preprint IFVE, STF 73-81; Препринт ИФВЭ, СТФ 73-83; Препринт ИФВЭ, СТФ 73-84; Препринт ИФВЭ, СТФ 73-85, Серпухов, 1973 | Zbl

[3] A. N. Vasilev, Yu. M. Pismak, TMF, 15 (1973), 182

[4] N. A. Alebastrov, G. V. Efimov, Commun. Math. Phys., 31 (1973), 1 | DOI | MR | Zbl

[5] A. N. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, «Nauka», 1969 | MR

[6] V. A. Alebastrov, G. V. Efimov, Preprint OIYaI R2-6888, Dubna, 1973 | MR | Zbl