Limit distribution functions of systems with many-particle interaction in classical statistical physics
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 1, pp. 132-140
Cet article a éte moissonné depuis la source Math-Net.Ru
For infinite systems of hard balls with many-particle interaction described by potentials with sufficiently rapid decreasing at the infinity, the existence of the limit distribution functions is proved as well as the existence of the generating functional of these functions, satisfying the system of functional equations which represent the generalization of the N. N. Bogoliubov equation for the generating functional of a system with the two-particle interaction.
@article{TMF_1975_25_1_a14,
author = {G. I. Nazin},
title = {Limit distribution functions of systems with many-particle interaction in classical statistical physics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {132--140},
year = {1975},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a14/}
}
TY - JOUR AU - G. I. Nazin TI - Limit distribution functions of systems with many-particle interaction in classical statistical physics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 132 EP - 140 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a14/ LA - ru ID - TMF_1975_25_1_a14 ER -
G. I. Nazin. Limit distribution functions of systems with many-particle interaction in classical statistical physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 1, pp. 132-140. http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a14/
[1] G. I. Nazin, TMF, 21 (1974), 388 | MR | Zbl
[2] B. G. Abrosimov, Izv. vuzov SSSR, fizika (to appear)
[3] D. Ryuel, Statisticheskaya mekhanika, «Mir», 1971
[4] R. L. Dobrushin, Funkts. analiz, 3 (1969), 27 | MR | Zbl
[5] E. A. Arinshtein, B. G. Abrosimov, G. I. Nazin, Izv. vuzov SSSR, fizika, 12 (1969), 137 | MR
[6] N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset, TMF, 1 (1969), 251
[7] D. M. Gitman, E. A. Arinshtein, Izv. vuzov SSSR, fizika, 9 (1971), 98 | MR