Complete ladder sets for $U(6, 6)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 3, pp. 315-324
Voir la notice de l'article provenant de la source Math-Net.Ru
Complete sets of commuting (symmetric) operators which, belong to the enveloping
algebra of an arbitrary ladder representation of the group $U(6, 6)$ are considered. These
sets are independent and each of them includes the operators $B, n, Y, Z, I^2, I_3, J^2, J_3$
which possess a definite physical interpretation [3]. The proof of the completeness of
the considered sets is the main result of the work. Besides this, a method is given for
the construction of all common eigenvectors of each complete set.
@article{TMF_1975_24_3_a2,
author = {I. S. Vaklev and S. B. Drenska and S. I. Zlatev and M. I. Ivanov and A. B. Nikolov},
title = {Complete ladder sets for $U(6, 6)$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {315--324},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a2/}
}
TY - JOUR AU - I. S. Vaklev AU - S. B. Drenska AU - S. I. Zlatev AU - M. I. Ivanov AU - A. B. Nikolov TI - Complete ladder sets for $U(6, 6)$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 315 EP - 324 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a2/ LA - ru ID - TMF_1975_24_3_a2 ER -
I. S. Vaklev; S. B. Drenska; S. I. Zlatev; M. I. Ivanov; A. B. Nikolov. Complete ladder sets for $U(6, 6)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 3, pp. 315-324. http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a2/