Complete ladder sets for $U(6, 6)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 3, pp. 315-324

Voir la notice de l'article provenant de la source Math-Net.Ru

Complete sets of commuting (symmetric) operators which, belong to the enveloping algebra of an arbitrary ladder representation of the group $U(6, 6)$ are considered. These sets are independent and each of them includes the operators $B, n, Y, Z, I^2, I_3, J^2, J_3$ which possess a definite physical interpretation [3]. The proof of the completeness of the considered sets is the main result of the work. Besides this, a method is given for the construction of all common eigenvectors of each complete set.
@article{TMF_1975_24_3_a2,
     author = {I. S. Vaklev and S. B. Drenska and S. I. Zlatev and M. I. Ivanov and A. B. Nikolov},
     title = {Complete ladder sets for $U(6, 6)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {315--324},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a2/}
}
TY  - JOUR
AU  - I. S. Vaklev
AU  - S. B. Drenska
AU  - S. I. Zlatev
AU  - M. I. Ivanov
AU  - A. B. Nikolov
TI  - Complete ladder sets for $U(6, 6)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 315
EP  - 324
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a2/
LA  - ru
ID  - TMF_1975_24_3_a2
ER  - 
%0 Journal Article
%A I. S. Vaklev
%A S. B. Drenska
%A S. I. Zlatev
%A M. I. Ivanov
%A A. B. Nikolov
%T Complete ladder sets for $U(6, 6)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 315-324
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a2/
%G ru
%F TMF_1975_24_3_a2
I. S. Vaklev; S. B. Drenska; S. I. Zlatev; M. I. Ivanov; A. B. Nikolov. Complete ladder sets for $U(6, 6)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 3, pp. 315-324. http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a2/