Two-sided estimates for eigenvalues of the Schr\"odinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 3, pp. 412-418
Voir la notice de l'article provenant de la source Math-Net.Ru
Schrödinger equation is substituted into two systems of $n$ linear equations with $n$
unknown quantitys. The coefficients of these equations are the matrix elements of the
hamiltonian between quasiclassical wavefunctions. The solution of these systems give
the two-side estimates for eigenvalues of the Schrodinger equation. The relative distance
between boundary $\simeq\lambda^k$, where $\lambda$ is the parameter of the quasiclassical decomposition for the $n$-th wavefunction, $k$ is the number of terms in this decomposition.
@article{TMF_1975_24_3_a12,
author = {G. V. Ryazanov},
title = {Two-sided estimates for eigenvalues of the {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {412--418},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a12/}
}
G. V. Ryazanov. Two-sided estimates for eigenvalues of the Schr\"odinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 3, pp. 412-418. http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a12/