Approximate solution of variable phase equation in the case of scattering on singular potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 3, pp. 400-405
Cet article a éte moissonné depuis la source Math-Net.Ru
A variable phase equation is obtained which is well suited for the problems with singular potentials. The method of formal series for solving this phase equation is applied. The solution is represented as a ratio of two Volterra series.
@article{TMF_1975_24_3_a10,
author = {A. A. Atanasov},
title = {Approximate solution of variable phase equation in the case of scattering on singular potentials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {400--405},
year = {1975},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a10/}
}
TY - JOUR AU - A. A. Atanasov TI - Approximate solution of variable phase equation in the case of scattering on singular potentials JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 400 EP - 405 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a10/ LA - ru ID - TMF_1975_24_3_a10 ER -
A. A. Atanasov. Approximate solution of variable phase equation in the case of scattering on singular potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 3, pp. 400-405. http://geodesic.mathdoc.fr/item/TMF_1975_24_3_a10/
[1] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 380 | DOI | MR
[2] A. T. Filippov, Phys. Lett., 8 (1964), 78 | DOI | MR
[3] B. A. Arbuzov, A. T. Filippov, O. A. Khrustalev, Phys. Lett., 8 (1964), 205 | DOI | MR
[4] M. Dubois Violette, Preprint Marselle, 69/P. 251, 1969
[5] M. Dubois Violette, J. Math. Phys., 11 (1970), 2539 | DOI | MR | Zbl
[6] F. M. Mors, G. Feshbakh, Metody teoreticheskoi fiziki, t. II, IL, 1960
[7] F. Kalodzhero, Metod fazovykh funktsii v teorii potentsialnogo rasseyaniya, «Mir», 1972