On a rapidly converging perturbation theory for a discrete spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 230-235
Cet article a éte moissonné depuis la source Math-Net.Ru
The perturbation theory for the discrete spectrum of the radial Schrödinger equation is generalized to the case when nonperturbated function has knots. To the $k$-ih order the eigenfunction is calculated to the accuracy $\varepsilon^{2^k}$, where $\varepsilon$ is the perturbation parameter. It is possible to obtain from this eigenfunction the energy to the accuracy $\varepsilon^{2^{k+1}}$. All corrections are the quadratures of this function. The dependence on all other parts of spectrum is absent. The expressions for shiftings of the knots under the perturbation are obtained.
@article{TMF_1975_24_2_a8,
author = {V. S. Polikanov},
title = {On a~rapidly converging perturbation theory for a discrete spectrum},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {230--235},
year = {1975},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a8/}
}
V. S. Polikanov. On a rapidly converging perturbation theory for a discrete spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 230-235. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a8/
[1] Ya. B. Zeldovich, ZhETF, 31 (1956), 1101
[2] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, «Nauka», 1966 | Zbl
[3] V. S. Polikanov, ZhETF, 52 (1967), 1326
[4] A. I. Mikhailov, V. S. Polikanov, ZhETF, 54 (1968), 175
[5] V. S. Pekar, TMF, 9 (1971), 440