On a~rapidly converging perturbation theory for a discrete spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 230-235
Voir la notice de l'article provenant de la source Math-Net.Ru
The perturbation theory for the discrete spectrum of the radial Schrödinger equation
is generalized to the case when nonperturbated function has knots. To the $k$-ih
order the eigenfunction is calculated to the accuracy $\varepsilon^{2^k}$, where $\varepsilon$ is the perturbation
parameter. It is possible to obtain from this eigenfunction the energy to the accuracy
$\varepsilon^{2^{k+1}}$. All corrections are the quadratures of this function. The dependence on all other
parts of spectrum is absent. The expressions for shiftings of the knots under the perturbation
are obtained.
@article{TMF_1975_24_2_a8,
author = {V. S. Polikanov},
title = {On a~rapidly converging perturbation theory for a discrete spectrum},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {230--235},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a8/}
}
V. S. Polikanov. On a~rapidly converging perturbation theory for a discrete spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 230-235. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a8/