Combinational analysis of the overlapping problem for vertices with more than four legs. II. Higher Legendre transforms
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 177-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of the graphs of the $m$-th Legendre transformation $\Gamma^{(m)}(\varepsilon_1,\dots,\varepsilon_m;A_{m+1},\dots,A_n)$ of the connected Green function generating functional ($\varepsilon_1,\dots,\varepsilon_m$ being dressed variables [7], $A_{m+1},\dots,A_n$ being bare ones) are considered. This gives an opportunity to find the explicite expression for the sum of all sceleton graphs included in the representation of; the dressed $k$-leg vertex, $k\leqslant m$, and containing nontrivial $l$-leg subgraphs, $l\leqslant k$.
@article{TMF_1975_24_2_a3,
     author = {Yu. M. Pis'mak},
     title = {Combinational analysis of the overlapping problem for vertices with more than four {legs.~II.} {Higher} {Legendre} transforms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--194},
     year = {1975},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a3/}
}
TY  - JOUR
AU  - Yu. M. Pis'mak
TI  - Combinational analysis of the overlapping problem for vertices with more than four legs. II. Higher Legendre transforms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 177
EP  - 194
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a3/
LA  - ru
ID  - TMF_1975_24_2_a3
ER  - 
%0 Journal Article
%A Yu. M. Pis'mak
%T Combinational analysis of the overlapping problem for vertices with more than four legs. II. Higher Legendre transforms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 177-194
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a3/
%G ru
%F TMF_1975_24_2_a3
Yu. M. Pis'mak. Combinational analysis of the overlapping problem for vertices with more than four legs. II. Higher Legendre transforms. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 177-194. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a3/

[1] C. De Dominicis, P. C. Martin, J. Math. Phys., 5:14 (1964), 31 | DOI | MR

[2] A. N. Vasilev, A. K. Kazanskii, TMF, 12 (1972), 352

[3] A. N. Vasilev, A. K. Kazanskii, TMF, 14 (1973), 289 | MR

[4] Yu. M. Pismak, TMF, 18 (1974), 299 | MR

[5] A. N. Vasilev, A. K. Kazanskii, Yu. M. Pismak, TMF, 20 (1974), 181

[6] A. N. Vasilev, A. K. Kazanskii, Yu. M. Pismak, TMF, 19 (1974), 186

[7] Yu. M. Pismak, TMF, 24 (1975), 34 | MR | Zbl