Invariants, Green's function, and coherent states of dynamical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 164-176
Voir la notice de l'article provenant de la source Math-Net.Ru
The relation between the Green function of a dynamical system and the integrals
of the motion which are the operators of initial coordinates and momenta of the system
is obtained. The Green function of a system with rather arbitrary hamiltonian, both
hermitian and nonhermitian, is shown to be the eigenfunction of the invariant operator
of initial coordinate. The quantum system with general quadratic hamiltonian and
the singular nonstationary oscillator are discussed as examples.
@article{TMF_1975_24_2_a2,
author = {V. V. Dodonov and I. A. Malkin and V. I. Man'ko},
title = {Invariants, {Green's} function, and coherent states of dynamical systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {164--176},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a2/}
}
TY - JOUR AU - V. V. Dodonov AU - I. A. Malkin AU - V. I. Man'ko TI - Invariants, Green's function, and coherent states of dynamical systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 164 EP - 176 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a2/ LA - ru ID - TMF_1975_24_2_a2 ER -
%0 Journal Article %A V. V. Dodonov %A I. A. Malkin %A V. I. Man'ko %T Invariants, Green's function, and coherent states of dynamical systems %J Teoretičeskaâ i matematičeskaâ fizika %D 1975 %P 164-176 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a2/ %G ru %F TMF_1975_24_2_a2
V. V. Dodonov; I. A. Malkin; V. I. Man'ko. Invariants, Green's function, and coherent states of dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 164-176. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a2/