Invariants, Green's function, and coherent states of dynamical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 164-176

Voir la notice de l'article provenant de la source Math-Net.Ru

The relation between the Green function of a dynamical system and the integrals of the motion which are the operators of initial coordinates and momenta of the system is obtained. The Green function of a system with rather arbitrary hamiltonian, both hermitian and nonhermitian, is shown to be the eigenfunction of the invariant operator of initial coordinate. The quantum system with general quadratic hamiltonian and the singular nonstationary oscillator are discussed as examples.
@article{TMF_1975_24_2_a2,
     author = {V. V. Dodonov and I. A. Malkin and V. I. Man'ko},
     title = {Invariants, {Green's} function, and coherent states of dynamical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {164--176},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a2/}
}
TY  - JOUR
AU  - V. V. Dodonov
AU  - I. A. Malkin
AU  - V. I. Man'ko
TI  - Invariants, Green's function, and coherent states of dynamical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 164
EP  - 176
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a2/
LA  - ru
ID  - TMF_1975_24_2_a2
ER  - 
%0 Journal Article
%A V. V. Dodonov
%A I. A. Malkin
%A V. I. Man'ko
%T Invariants, Green's function, and coherent states of dynamical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 164-176
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a2/
%G ru
%F TMF_1975_24_2_a2
V. V. Dodonov; I. A. Malkin; V. I. Man'ko. Invariants, Green's function, and coherent states of dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 164-176. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a2/