Statistical theory of diffusion. Application to a vacancy in a linear chain of atoms
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 265-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The model for a vacancy in a lattice consists of a linear chain of the atoms, which contains one vacant site, together with a substrate potential. For this model the diffusion coefficient of vacancy is studied on the basis of the Kubo's expression for the transport coefficient. In deriving one a lattice distortion around the vacancy and massdifference scattering are taken into account. Two mechanisms of the transition the atom in the neighbouring vacant site is considered: the Orbach-type process at high temperatures which lead to the Arrhenius-type expression (the classical picture) and the tunnel transition at low temperatures. The phonon scattering is described by means of the $t$-matrix and Green function method.
@article{TMF_1975_24_2_a13,
     author = {Yu. A. Kashlev},
     title = {Statistical theory of diffusion. {Application} to a~vacancy in a~linear chain of atoms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {265--277},
     year = {1975},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a13/}
}
TY  - JOUR
AU  - Yu. A. Kashlev
TI  - Statistical theory of diffusion. Application to a vacancy in a linear chain of atoms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 265
EP  - 277
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a13/
LA  - ru
ID  - TMF_1975_24_2_a13
ER  - 
%0 Journal Article
%A Yu. A. Kashlev
%T Statistical theory of diffusion. Application to a vacancy in a linear chain of atoms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 265-277
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a13/
%G ru
%F TMF_1975_24_2_a13
Yu. A. Kashlev. Statistical theory of diffusion. Application to a vacancy in a linear chain of atoms. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a13/

[1] Yu. A. Kashlev, TMF, 14 (1973), 235

[2] D. N. Zubarev, UFN, 71 (1960), 71 | DOI | MR

[3] P. Gosar, Nuovo Cim., 31 (1964), 781 | DOI

[4] C. P. Flynn, A. Stoneham, Phys. Rev., B1 (1970), 3966 | DOI

[5] J. A. Sussmann, Ann. Phys., 6 (1971), 135 | DOI

[6] L. P. Kadanoff, J. Swift, Phys. Rev., 165 (1968), 310 | DOI

[7] V. Gallina, M. Omini, Phys. Stat. Sol., 6 (1964), 391 | DOI

[8] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, «Nauka», 1971

[9] A. F. Andreev, I. M. Lifshits, ZhETF, 56 (1969), 2057

[10] J. H. Weiner, W. F. Adler, Phys. Rev., 144 (1966), 511 | DOI

[11] D. L. Dexter, Solid State Phys., 6 (1958), 355 | MR

[12] C. P. Flynn, Phys. Rev., 117 (1968), 682 | DOI

[13] R. Kubo, Phys. Rev., 86 (1952), 929 | DOI | Zbl

[14] I. Prigogine, T. A. Bak, J. Chem. Phys., 31 (1959), 1368 | DOI | MR

[15] M. Omini, Nuovo Cim., 54 (1968), 116 | DOI

[16] T. Gezsti, Phys. Stat. Sol., 20 (1967), 165 | DOI

[17] R. Kubo, Y. Toyozawa, Progr. Theor. Phys., 13 (1955), 160 | DOI | Zbl

[18] Ya. I. Frenkel, Sobranie trudov, t. II, Izd-vo AN SSSR, 1958, str. 254 | MR

[19] S. Gleston, K. Leidler, G. Eiring, Teoriya absolyutnykh skorostei khimicheskikh reaktsii, IL, 1948

[20] V. Gallina, M. Omini, Phys. Stat. Sol., 7 (1964), 29 | DOI