Convergence of the virial expansion for the classical canonical ensemble
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 248-254
Cet article a éte moissonné depuis la source Math-Net.Ru
The infinite set of coupled integral equations for correlation functions in the case of classical canonical ensemble similar to those of Kirkwood–Salsburg is derived starting with the Bogoliubov integral-differential equations. The theorem of existence and uniqueness of solution is proved for such equations by the method of a non-linear operator ones in the Banach space. The solution has a form of the power series in density.
@article{TMF_1975_24_2_a11,
author = {Yu. G. Pogorelov},
title = {Convergence of the virial expansion for the classical canonical ensemble},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {248--254},
year = {1975},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a11/}
}
Yu. G. Pogorelov. Convergence of the virial expansion for the classical canonical ensemble. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 248-254. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a11/
[1] D. Ryuel, Statisticheskaya mekhanika (strogie rezultaty), «Mir», 1972
[2] N. N. Bogolyubov, B. I. Khatset, DAN SSSR, 66 (1949), 321 | MR | Zbl
[3] N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset, TMF, 1 (1969), 251
[4] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR
[5] R. Edvards, Funktsionalnyi analiz (teoriya i prilozheniya), «Mir», 1969