Convergence of the virial expansion for the classical canonical ensemble
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 248-254
Voir la notice de l'article provenant de la source Math-Net.Ru
The infinite set of coupled integral equations for correlation functions in the case
of classical canonical ensemble similar to those of Kirkwood–Salsburg is derived
starting with the Bogoliubov integral-differential equations. The theorem of existence
and uniqueness of solution is proved for such equations by the method of a non-linear
operator ones in the Banach space. The solution has a form of the power series in
density.
@article{TMF_1975_24_2_a11,
author = {Yu. G. Pogorelov},
title = {Convergence of the virial expansion for the classical canonical ensemble},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {248--254},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a11/}
}
TY - JOUR AU - Yu. G. Pogorelov TI - Convergence of the virial expansion for the classical canonical ensemble JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 248 EP - 254 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a11/ LA - ru ID - TMF_1975_24_2_a11 ER -
Yu. G. Pogorelov. Convergence of the virial expansion for the classical canonical ensemble. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 248-254. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a11/