Convergence of the virial expansion for the classical canonical ensemble
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 248-254

Voir la notice de l'article provenant de la source Math-Net.Ru

The infinite set of coupled integral equations for correlation functions in the case of classical canonical ensemble similar to those of Kirkwood–Salsburg is derived starting with the Bogoliubov integral-differential equations. The theorem of existence and uniqueness of solution is proved for such equations by the method of a non-linear operator ones in the Banach space. The solution has a form of the power series in density.
@article{TMF_1975_24_2_a11,
     author = {Yu. G. Pogorelov},
     title = {Convergence of the virial expansion for the classical canonical ensemble},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {248--254},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a11/}
}
TY  - JOUR
AU  - Yu. G. Pogorelov
TI  - Convergence of the virial expansion for the classical canonical ensemble
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 248
EP  - 254
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a11/
LA  - ru
ID  - TMF_1975_24_2_a11
ER  - 
%0 Journal Article
%A Yu. G. Pogorelov
%T Convergence of the virial expansion for the classical canonical ensemble
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 248-254
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a11/
%G ru
%F TMF_1975_24_2_a11
Yu. G. Pogorelov. Convergence of the virial expansion for the classical canonical ensemble. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 248-254. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a11/