Microscopic solutions of the Boltzmann–Enskog equation in kinetic theory for elastic balls
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 242-247
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown, that the Bolzman–Enskog equation, that was always considered as the small density approximation, has also the microscopic solutions, corresponding to the exact motion of particles.
@article{TMF_1975_24_2_a10,
author = {N. N. Bogolyubov},
title = {Microscopic solutions of the {Boltzmann{\textendash}Enskog} equation in kinetic theory for elastic balls},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {242--247},
year = {1975},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a10/}
}
TY - JOUR AU - N. N. Bogolyubov TI - Microscopic solutions of the Boltzmann–Enskog equation in kinetic theory for elastic balls JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 242 EP - 247 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a10/ LA - ru ID - TMF_1975_24_2_a10 ER -
N. N. Bogolyubov. Microscopic solutions of the Boltzmann–Enskog equation in kinetic theory for elastic balls. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 242-247. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a10/
[1] A. A. Vlasov, Teoriya mnogikh chastits, Gostekhizdat, 1950
[2] J. J. Hopfield, J. F. Bastin, Phys. Rev., 168 (1968), 193 ; M. H. Ernst, J. R. Dorfman, W. R. Hoegy, J. M. J. van Leeuwen, Physica, 45 (1969), 127 | DOI | DOI | MR
[3] N. N. Bogolyubov, Lektsiïz kvantovoïstatistiki, «Radyanska shkola», 1949, str. 54, 60; Lectures in quantum statistics, vol. 1,, Gordon and Breach, 1967, p. 55, 61 | MR | Zbl
[4] J. T. Ubbink, E. H. Hauge, Physica, 70 (1973), 297 | DOI