Microscopic solutions of the Boltzmann–Enskog equation in kinetic theory for elastic balls
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 242-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown, that the Bolzman–Enskog equation, that was always considered as the small density approximation, has also the microscopic solutions, corresponding to the exact motion of particles.
@article{TMF_1975_24_2_a10,
     author = {N. N. Bogolyubov},
     title = {Microscopic solutions of the {Boltzmann{\textendash}Enskog} equation in kinetic theory for elastic balls},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {242--247},
     year = {1975},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a10/}
}
TY  - JOUR
AU  - N. N. Bogolyubov
TI  - Microscopic solutions of the Boltzmann–Enskog equation in kinetic theory for elastic balls
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 242
EP  - 247
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a10/
LA  - ru
ID  - TMF_1975_24_2_a10
ER  - 
%0 Journal Article
%A N. N. Bogolyubov
%T Microscopic solutions of the Boltzmann–Enskog equation in kinetic theory for elastic balls
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 242-247
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a10/
%G ru
%F TMF_1975_24_2_a10
N. N. Bogolyubov. Microscopic solutions of the Boltzmann–Enskog equation in kinetic theory for elastic balls. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 242-247. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a10/

[1] A. A. Vlasov, Teoriya mnogikh chastits, Gostekhizdat, 1950

[2] J. J. Hopfield, J. F. Bastin, Phys. Rev., 168 (1968), 193 ; M. H. Ernst, J. R. Dorfman, W. R. Hoegy, J. M. J. van Leeuwen, Physica, 45 (1969), 127 | DOI | DOI | MR

[3] N. N. Bogolyubov, Lektsiïz kvantovoïstatistiki, «Radyanska shkola», 1949, str. 54, 60; Lectures in quantum statistics, vol. 1,, Gordon and Breach, 1967, p. 55, 61 | MR | Zbl

[4] J. T. Ubbink, E. H. Hauge, Physica, 70 (1973), 297 | DOI