Local form of a~solution of the Chew--Low equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 155-163
Voir la notice de l'article provenant de la source Math-Net.Ru
The Chew–Low equations in the neighbourhood of the degenerated static point
are considered. By means of the commutative one parametric abelian group of continuous
transformations the solution entering this point is constructed. The solution is
represented by the convergent series, depending on three arbitrary functions.
@article{TMF_1975_24_2_a1,
author = {V. P. Gerdt and V. A. Meshcheryakov},
title = {Local form of a~solution of the {Chew--Low} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {155--163},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a1/}
}
V. P. Gerdt; V. A. Meshcheryakov. Local form of a~solution of the Chew--Low equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 2, pp. 155-163. http://geodesic.mathdoc.fr/item/TMF_1975_24_2_a1/