Combinatorial analysis of the overlapping problem for vertices with more than four legs
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 34-48
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The definition of reducihility of a connected diagram is introduced, which makes
it possible to extend the definition of reducibility of a diagram [1] to the $n>4$,
and also to formulate the definition of dressed $n$-tail vertex with $n$ arbitrarily large.
Some theorems about topological properties of diagrams with vertices of arbitrarily
high order are proved.
			
            
            
            
          
        
      @article{TMF_1975_24_1_a4,
     author = {Yu. M. Pis'mak},
     title = {Combinatorial analysis of the overlapping problem for vertices with more than four legs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a4/}
}
                      
                      
                    TY - JOUR AU - Yu. M. Pis'mak TI - Combinatorial analysis of the overlapping problem for vertices with more than four legs JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 34 EP - 48 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a4/ LA - ru ID - TMF_1975_24_1_a4 ER -
Yu. M. Pis'mak. Combinatorial analysis of the overlapping problem for vertices with more than four legs. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 34-48. http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a4/