Combinatorial analysis of the overlapping problem for vertices with more than four legs
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 34-48
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The definition of reducihility of a connected diagram is introduced, which makes it possible to extend the definition of reducibility of a diagram [1] to the $n>4$, and also to formulate the definition of dressed $n$-tail vertex with $n$ arbitrarily large. Some theorems about topological properties of diagrams with vertices of arbitrarily high order are proved.
@article{TMF_1975_24_1_a4,
     author = {Yu. M. Pis'mak},
     title = {Combinatorial analysis of the overlapping problem for vertices with more than four legs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {34--48},
     year = {1975},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a4/}
}
TY  - JOUR
AU  - Yu. M. Pis'mak
TI  - Combinatorial analysis of the overlapping problem for vertices with more than four legs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 34
EP  - 48
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a4/
LA  - ru
ID  - TMF_1975_24_1_a4
ER  - 
%0 Journal Article
%A Yu. M. Pis'mak
%T Combinatorial analysis of the overlapping problem for vertices with more than four legs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 34-48
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a4/
%G ru
%F TMF_1975_24_1_a4
Yu. M. Pis'mak. Combinatorial analysis of the overlapping problem for vertices with more than four legs. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 34-48. http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a4/

[1] C. De Dominicis, P. C. Martin, J. Math. Phys., 5:14 (1984), 31

[2] A. N. Vasilev, A. K. Kazanskii, TMF, 12 (1972), 352

[3] A. N. Vasilev, A. K. Kazanskii, TMF, 14 (1973), 289 | MR

[4] Yu. M. Pismak, TMF, 18 (1974), 299 | MR

[5] A. N. Vasilev, A. K. Kazanskii, Yu. M. Pismak, TMF, 20 (1974), 181