Reggeon rescattering in the $\varphi^4$ theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 17-23
Voir la notice de l'article provenant de la source Math-Net.Ru
In the $\alpha$-representation all logarithms of the Mandelstam diagram in the $\varphi^4$-
theory are summed up. It is shown that in spite of the absence of rapid decreasing of
the off-shell scattering amplitude, the rescatterings of the Regge poles as well as
the fixed square-root branching points, which are present in the $\varphi^4$-theory together with the Regge poles, are correctly described by the usual formula.
@article{TMF_1975_24_1_a2, author = {M. V. Gershkevich and A. V. Efremov}, title = {Reggeon rescattering in the $\varphi^4$ theory}, journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika}, pages = {17--23}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {1975}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a2/} }
M. V. Gershkevich; A. V. Efremov. Reggeon rescattering in the $\varphi^4$ theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 17-23. http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a2/