Reggeon rescattering in the $\varphi^4$ theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 17-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the $\alpha$-representation all logarithms of the Mandelstam diagram in the $\varphi^4$- theory are summed up. It is shown that in spite of the absence of rapid decreasing of the off-shell scattering amplitude, the rescatterings of the Regge poles as well as the fixed square-root branching points, which are present in the $\varphi^4$-theory together with the Regge poles, are correctly described by the usual formula.
@article{TMF_1975_24_1_a2,
     author = {M. V. Gershkevich and A. V. Efremov},
     title = {Reggeon rescattering in the $\varphi^4$ theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {17--23},
     year = {1975},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a2/}
}
TY  - JOUR
AU  - M. V. Gershkevich
AU  - A. V. Efremov
TI  - Reggeon rescattering in the $\varphi^4$ theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 17
EP  - 23
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a2/
LA  - ru
ID  - TMF_1975_24_1_a2
ER  - 
%0 Journal Article
%A M. V. Gershkevich
%A A. V. Efremov
%T Reggeon rescattering in the $\varphi^4$ theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 17-23
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a2/
%G ru
%F TMF_1975_24_1_a2
M. V. Gershkevich; A. V. Efremov. Reggeon rescattering in the $\varphi^4$ theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 17-23. http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a2/

[1] D. Amati, S. Fubini, A. Stanghelini, Nuovo Cim., 26 (1962), 896 | DOI | MR

[2] S. Mandelstam, Nuovo Cim., 30 (1963), 1127 | DOI | MR

[3] I. C. Polkinghorne, J. Math. Phys., 4 (1963), 1396 | DOI | MR

[4] G. E. Hite, Acta phys. Austriaca, Suppl. VIII, 80 (1970)

[5] V. N. Gribov, ZhETF, 26 (1968), 414

[6] V. R. Garsevanishvili et al., Proc. of Coral Gables Gonf., 1969, 74; В. Р. Гарсеванишвили и др., Обзор, ЭЧАЯ, 1 (1970), 92

[7] V. M. Budnev et al., Preprint JINR E2-5509, 1970 ; A. V. Efremov et al., Preprint JINR E2-4572, 1969 ; Материалы межд. совещания по аналит. свойствам амплитуд, Серпухов, 1969 | MR | MR

[8] E. R. Speer, J. Math. Phys., 9 (1968), 1404 | DOI

[9] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v kvantovuyu teoriyu polya, Gostekhizdat, 1957 | MR

[10] V. M. Budnev i dr., TMF, 6 (1971), 55 ; A. V. Efremov, Preprint JINR E2-6612, 1972; I. F. Ginzburg, Preprint TP-74, Novosibirsk, 1972 | Zbl

[11] G. Tiktopoulos, Phys. Rev., 131 (1963), 2373 | DOI | MR

[12] I. T. Drummond, Nuovo Cim., 29 (1963), 720 | DOI | MR | Zbl

[13] A. V. Efremov, R. Peschanski, Preprint JINR E2-6350, 1972

[14] K. G. Boreskov i dr., YaF, 14 (1971), 814 | MR

[15] L. D. Solovev, ZhETF, 49 (1965), 292

[16] V. A. Tsarev, Nucl. Phys., B63 (1973), 301 | DOI