Reggeon rescattering in the $\varphi^4$ theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 17-23

Voir la notice de l'article provenant de la source Math-Net.Ru

In the $\alpha$-representation all logarithms of the Mandelstam diagram in the $\varphi^4$- theory are summed up. It is shown that in spite of the absence of rapid decreasing of the off-shell scattering amplitude, the rescatterings of the Regge poles as well as the fixed square-root branching points, which are present in the $\varphi^4$-theory together with the Regge poles, are correctly described by the usual formula.
@article{TMF_1975_24_1_a2,
     author = {M. V. Gershkevich and A. V. Efremov},
     title = {Reggeon rescattering in the $\varphi^4$ theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {17--23},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a2/}
}
TY  - JOUR
AU  - M. V. Gershkevich
AU  - A. V. Efremov
TI  - Reggeon rescattering in the $\varphi^4$ theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 17
EP  - 23
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a2/
LA  - ru
ID  - TMF_1975_24_1_a2
ER  - 
%0 Journal Article
%A M. V. Gershkevich
%A A. V. Efremov
%T Reggeon rescattering in the $\varphi^4$ theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 17-23
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a2/
%G ru
%F TMF_1975_24_1_a2
M. V. Gershkevich; A. V. Efremov. Reggeon rescattering in the $\varphi^4$ theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 17-23. http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a2/