Exterior fields of collapsed bodies
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 136-140
Voir la notice de l'article provenant de la source Math-Net.Ru
Static spherically symmetric solutions of the Einstein equations (without the cosmological
term) and the Schrödinger–Fock–Klein (or Proca) equations with the
massive scalar field $\varphi$ (or vector field $B_{\mu}$) in the central coordinate system with the interval $ds^2=e^{\nu}dx^{0\,2}
-e^{\lambda}dr^2-r^2d\Omega^2$ are investigated. It is shown that every solution
$\{\nu, \lambda, \varphi\}$ $(resp., \{\nu, \lambda, B_{\mu}\})$ with asymptotically flat metrics and $\varphi\not\equiv 0$ $(resp., B_{\mu}\not\equiv 0)$ is regular with respect to $r$ in the interval $(0,\infty)$.
@article{TMF_1975_24_1_a16,
author = {A. A. Solodov},
title = {Exterior fields of collapsed bodies},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {136--140},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a16/}
}
A. A. Solodov. Exterior fields of collapsed bodies. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 136-140. http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a16/