Exterior fields of collapsed bodies
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 136-140

Voir la notice de l'article provenant de la source Math-Net.Ru

Static spherically symmetric solutions of the Einstein equations (without the cosmological term) and the Schrödinger–Fock–Klein (or Proca) equations with the massive scalar field $\varphi$ (or vector field $B_{\mu}$) in the central coordinate system with the interval $ds^2=e^{\nu}dx^{0\,2} -e^{\lambda}dr^2-r^2d\Omega^2$ are investigated. It is shown that every solution $\{\nu, \lambda, \varphi\}$ $(resp., \{\nu, \lambda, B_{\mu}\})$ with asymptotically flat metrics and $\varphi\not\equiv 0$ $(resp., B_{\mu}\not\equiv 0)$ is regular with respect to $r$ in the interval $(0,\infty)$.
@article{TMF_1975_24_1_a16,
     author = {A. A. Solodov},
     title = {Exterior fields of collapsed bodies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {136--140},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a16/}
}
TY  - JOUR
AU  - A. A. Solodov
TI  - Exterior fields of collapsed bodies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 136
EP  - 140
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a16/
LA  - ru
ID  - TMF_1975_24_1_a16
ER  - 
%0 Journal Article
%A A. A. Solodov
%T Exterior fields of collapsed bodies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 136-140
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a16/
%G ru
%F TMF_1975_24_1_a16
A. A. Solodov. Exterior fields of collapsed bodies. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 136-140. http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a16/