Uniqueness of the limit Gibbs distribution in one-dimensional classical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 100-108
Voir la notice de l'article provenant de la source Math-Net.Ru
Uniqueness of the limit Gibbs distribution is proved for the one-dimensional latticesystems,
in which the slow decreasing of the inter-particle interaction is allowed. The main restriction on the interaction potential $U(c)$ is
$$
\sum_{c\colon0\in c,\,\operatorname{diam}\{c\}=K}\operatorname{diam}\{c\}|U(c)|\ln\ln K,
$$
where $c=\{x_1,\dots,x_n\}$ is an arbitrary configuration of particles on the lattice and $B$
is some sufficiently small constant.
@article{TMF_1975_24_1_a11, author = {R. A. Minlos and G. M. Natapov}, title = {Uniqueness of the limit {Gibbs} distribution in one-dimensional classical systems}, journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika}, pages = {100--108}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {1975}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a11/} }
TY - JOUR AU - R. A. Minlos AU - G. M. Natapov TI - Uniqueness of the limit Gibbs distribution in one-dimensional classical systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 100 EP - 108 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a11/ LA - ru ID - TMF_1975_24_1_a11 ER -
R. A. Minlos; G. M. Natapov. Uniqueness of the limit Gibbs distribution in one-dimensional classical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a11/