Uniqueness of the limit Gibbs distribution in one-dimensional classical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 100-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Uniqueness of the limit Gibbs distribution is proved for the one-dimensional latticesystems, in which the slow decreasing of the inter-particle interaction is allowed. The main restriction on the interaction potential $U(c)$ is $$ \sum_{c\colon0\in c,\,\operatorname{diam}\{c\}=K}\operatorname{diam}\{c\}|U(c)|<B\ln\ln K, $$ where $c=\{x_1,\dots,x_n\}$ is an arbitrary configuration of particles on the lattice and $B$ is some sufficiently small constant.
@article{TMF_1975_24_1_a11,
     author = {R. A. Minlos and G. M. Natapov},
     title = {Uniqueness of the limit {Gibbs} distribution in one-dimensional classical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {100--108},
     year = {1975},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a11/}
}
TY  - JOUR
AU  - R. A. Minlos
AU  - G. M. Natapov
TI  - Uniqueness of the limit Gibbs distribution in one-dimensional classical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 100
EP  - 108
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a11/
LA  - ru
ID  - TMF_1975_24_1_a11
ER  - 
%0 Journal Article
%A R. A. Minlos
%A G. M. Natapov
%T Uniqueness of the limit Gibbs distribution in one-dimensional classical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 100-108
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a11/
%G ru
%F TMF_1975_24_1_a11
R. A. Minlos; G. M. Natapov. Uniqueness of the limit Gibbs distribution in one-dimensional classical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a11/

[1] D. Ruelle, Commun. Math. Phys., 9 (1968), 267 | DOI | MR | Zbl

[2] R. L. Dobrushin, Funktsionalnyi analiz i ego prilozheniya, 2 (1968), 201

[3] R. L. Dobrushin, Funktsionalnyi analiz i ego prilozheniya, 3 (1969), 27 | MR | Zbl

[4] G. Gallavotti, S. Miracle-Sole, J. Math. Phys., 1 (1970), 147 | DOI | MR

[5] Yu. Sukhov, UMN, 25:2 (1970), 277 | MR | Zbl

[6] F. J. Dyson, Commun. Math. Phys., 2 (1969), 91 | DOI | MR

[7] F. J. Dyson, Commun. Math. Phys., 3 (1969), 212 | DOI | MR

[8] R. L. Dobrushin, Teoriya veroyatnostei i ee primeneniya, 13:2 (1968), 201 | MR | Zbl