Uniqueness of the limit Gibbs distribution in one-dimensional classical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 100-108
Cet article a éte moissonné depuis la source Math-Net.Ru
Uniqueness of the limit Gibbs distribution is proved for the one-dimensional latticesystems, in which the slow decreasing of the inter-particle interaction is allowed. The main restriction on the interaction potential $U(c)$ is $$ \sum_{c\colon0\in c,\,\operatorname{diam}\{c\}=K}\operatorname{diam}\{c\}|U(c)|<B\ln\ln K, $$ where $c=\{x_1,\dots,x_n\}$ is an arbitrary configuration of particles on the lattice and $B$ is some sufficiently small constant.
@article{TMF_1975_24_1_a11,
author = {R. A. Minlos and G. M. Natapov},
title = {Uniqueness of the limit {Gibbs} distribution in one-dimensional classical systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {100--108},
year = {1975},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a11/}
}
TY - JOUR AU - R. A. Minlos AU - G. M. Natapov TI - Uniqueness of the limit Gibbs distribution in one-dimensional classical systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 100 EP - 108 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a11/ LA - ru ID - TMF_1975_24_1_a11 ER -
R. A. Minlos; G. M. Natapov. Uniqueness of the limit Gibbs distribution in one-dimensional classical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 24 (1975) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/TMF_1975_24_1_a11/
[1] D. Ruelle, Commun. Math. Phys., 9 (1968), 267 | DOI | MR | Zbl
[2] R. L. Dobrushin, Funktsionalnyi analiz i ego prilozheniya, 2 (1968), 201
[3] R. L. Dobrushin, Funktsionalnyi analiz i ego prilozheniya, 3 (1969), 27 | MR | Zbl
[4] G. Gallavotti, S. Miracle-Sole, J. Math. Phys., 1 (1970), 147 | DOI | MR
[5] Yu. Sukhov, UMN, 25:2 (1970), 277 | MR | Zbl
[6] F. J. Dyson, Commun. Math. Phys., 2 (1969), 91 | DOI | MR
[7] F. J. Dyson, Commun. Math. Phys., 3 (1969), 212 | DOI | MR
[8] R. L. Dobrushin, Teoriya veroyatnostei i ee primeneniya, 13:2 (1968), 201 | MR | Zbl