Derivation of relativistic transport equations of a~plasma in a~strong electromagnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 3, pp. 409-417

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of D. N. Zubarev's non-equilibrium statistical operator method, relativistic kinetic equation for a classical completely ionized small density plasma in strong rapidly changing electromagnetic field is deduced for the first time. In the particular case, when all the effects of external fields on the particle collision process are neglected, the collision integral obtained in the present work is transformed to the Landau relativistic collision integral obtained previously by other methods.
@article{TMF_1975_23_3_a13,
     author = {A. V. Prozorkevich and S. A. Smolyanskii},
     title = {Derivation of relativistic transport equations of a~plasma in a~strong electromagnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {409--417},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_3_a13/}
}
TY  - JOUR
AU  - A. V. Prozorkevich
AU  - S. A. Smolyanskii
TI  - Derivation of relativistic transport equations of a~plasma in a~strong electromagnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 409
EP  - 417
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_23_3_a13/
LA  - ru
ID  - TMF_1975_23_3_a13
ER  - 
%0 Journal Article
%A A. V. Prozorkevich
%A S. A. Smolyanskii
%T Derivation of relativistic transport equations of a~plasma in a~strong electromagnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 409-417
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_23_3_a13/
%G ru
%F TMF_1975_23_3_a13
A. V. Prozorkevich; S. A. Smolyanskii. Derivation of relativistic transport equations of a~plasma in a~strong electromagnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 3, pp. 409-417. http://geodesic.mathdoc.fr/item/TMF_1975_23_3_a13/