Local perturbations of the dynamics of of infinite systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 3, pp. 300-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems, the dynamics of which is locally perturbed, are studied. Observables of the system under consideration are supposed to generate a $C^*$-algebra $A$, and unperturbed $\sigma_t$ and perturbed $\sigma_t^p$ evolutions are represented as one-parameter groups of automorphisms on $A$. If $\omega$ is $\sigma_t^p$-KMS-state and $A$ is asymptotically abelian then $\lim\limits_{t\to\pm\infty}\omega(\sigma_t(a))=\omega_{\pm}(a)$ $(a\in A)$ exists, $\omega_+=\omega_-$ and $\omega_{\pm}$ is $\sigma_t$-KMS-state. If moreover $\lim\limits_{s\to\pm\infty}\sigma_s^p\sigma_s=\gamma_{\pm}$ exists and determines epimorphisms $\gamma_{\pm}$ (not necessarily invertible) of $A$ intertwining $\sigma_t$ and $\sigma_t^p$ $(\gamma_{\pm}\sigma_t=\sigma_t^p\gamma_{\pm})$ then $\gamma_{\pm}$ can be extended to automorphisms of von Neumann algebra $M=\pi_{\omega}(A)''$ where $\pi_{\omega}$ is the representation of $A$ corresponding to the state $\omega$. Therefore if $\gamma_{\pm},\sigma_t$ and $\sigma_t^p$ are considered as automorphisms of $M$ then $\gamma_{\pm}^{-1}\sigma_t^p=\sigma_t\gamma_{\pm}^{-1}$. With the aid of this result we prove that $\lim\limits_{|t|\to\infty}\omega_{\pm}(\sigma_t^p(a))$ exists and is equal to $\omega(a)$ $(a\in A)$. We also prove that $M=\pi_{\omega}(A)''$ is asymptotically abelian with respect to the extension of $\sigma_t$ to the automorphisms of $M$ and that $M$ is of the type III.
@article{TMF_1975_23_3_a1,
     author = {V. Ya. Golodets},
     title = {Local perturbations of the dynamics of of infinite systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {300--309},
     year = {1975},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_3_a1/}
}
TY  - JOUR
AU  - V. Ya. Golodets
TI  - Local perturbations of the dynamics of of infinite systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 300
EP  - 309
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_23_3_a1/
LA  - ru
ID  - TMF_1975_23_3_a1
ER  - 
%0 Journal Article
%A V. Ya. Golodets
%T Local perturbations of the dynamics of of infinite systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 300-309
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1975_23_3_a1/
%G ru
%F TMF_1975_23_3_a1
V. Ya. Golodets. Local perturbations of the dynamics of of infinite systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 3, pp. 300-309. http://geodesic.mathdoc.fr/item/TMF_1975_23_3_a1/

[1] D. W. Robinson, Commun. Math. Phys., 31 (1973), 171 | DOI | MR | Zbl

[2] H. Araki, Relative Hamiltonian for faithful normal states of von Neumann algebra, Preprint, 126, RIMS, Kyoto Univ., 1972 | MR

[3] R. Haag, N. M. Hugenholtz, M. Winnink, Commun. Math. Phys., 5 (1967), 215 | DOI | MR | Zbl

[4] D. W. Robinson, Commun. Math. Phys., 6 (1967), 151 ; 7 (1968), 337 | DOI | MR | Zbl | DOI | Zbl

[5] D. A. Dubin, G. I. Sewel, J. Math. Phys., 11 (1970), 2990 | DOI | MR | Zbl

[6] M. Takesaki, Tomita's Theory of modular hilbert algebras and its appl., Lecture Notes in Math., 128, Springer-Verlag, Berlin, 1970 | DOI | MR | Zbl

[7] M. A. Naimark, Normirovannye koltsa, «Nauka», 1969 | MR

[8] J. Dixmier, Les algebres d'operators dan l'espase hilbertien, Gauthier-Villars, Paris, 1969 | MR

[9] E. L. Griffin, Trans. Amer. Math. Soc., 79 (1955), 389 | DOI | MR | Zbl

[10] M. S. Glaser, Trans. Amer. Math. Soc., 178 (1973), 41 | DOI | MR | Zbl