Calculation of correlation functions in the case of degeneracy of the state of statistical equilibrium
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 2, pp. 221-237
Cet article a éte moissonné depuis la source Math-Net.Ru
General procedure of constructing the solutions of systems of equations for normal and anomalous correlation functions is developed. Approximate solutions valid in the whole time interval from $t=0$ to infinity are found in general form. For the case of superconductive model based on the Frohlich hamiltonian, energy of elementary excitations and damping are calculated and asymptotic expressions for correlation functions at large and small values of the time are obtained.
@article{TMF_1975_23_2_a6,
author = {Yu. A. Tserkovnikov},
title = {Calculation of correlation functions in the case of degeneracy of the state of statistical equilibrium},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {221--237},
year = {1975},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_2_a6/}
}
TY - JOUR AU - Yu. A. Tserkovnikov TI - Calculation of correlation functions in the case of degeneracy of the state of statistical equilibrium JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 221 EP - 237 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1975_23_2_a6/ LA - ru ID - TMF_1975_23_2_a6 ER -
Yu. A. Tserkovnikov. Calculation of correlation functions in the case of degeneracy of the state of statistical equilibrium. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 2, pp. 221-237. http://geodesic.mathdoc.fr/item/TMF_1975_23_2_a6/
[1] Yu. A. Tserkovnikov, TMF, 7 (1971), 250
[2] Yu. G. Rudoi, Yu. A. Tserkovnikov, TMF, 14 (1973), 102
[3] Yu. G. Rudoi, Yu. A. Tserkovnikov, TMF, 15 (1973), 388
[4] N. N. Bogolyubov, Preprint OIYaI D-781, Dubna, 1961
[5] S. T. Belyaev, ZhETF, 34 (1958), 417 ; 433 | Zbl | Zbl
[6] L. P. Gorkov, ZhETF, 34 (1958), 735 | MR | Zbl
[7] N. N. Bogolyubov, Izv. AN SSSR, ser. fiz., 11 (1947), 67 | MR
[8] N. N. Bogolyubov, ZhETF, 34 (1958), 58 | Zbl
[9] R. M. Wilcox, J. Math. Phys., 8 (1967), 962 | DOI | MR | Zbl
[10] D. N. Zubarev, DAN SSSR, 132 (1960), 1055
[11] G. M. Eliashberg, ZhETF, 38 (1960), 966
[12] A. B. Migdal, ZhETF, 34 (1958), 1438 | MR