Spectral density of eigenvalues of the wave equation and vacuum polarization
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 2, pp. 178-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Effective Lagrangian of the vacuum polarisation is expressed in terms of spectral density of eigen-values of the wave equation and five-dimensional Green function introduced by V. A. Fock in his method of the 5-th coordinate. Method can be applied for external fields of arbitrary strength but only if the interaction of vacuum fields is neglected. The calculations for the case of vacuum polarisation by gravitational and electromagnetic fields are performed.
@article{TMF_1975_23_2_a2,
     author = {A. D. Sakharov},
     title = {Spectral density of eigenvalues of the wave equation and vacuum polarization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {178--190},
     year = {1975},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_2_a2/}
}
TY  - JOUR
AU  - A. D. Sakharov
TI  - Spectral density of eigenvalues of the wave equation and vacuum polarization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 178
EP  - 190
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_23_2_a2/
LA  - ru
ID  - TMF_1975_23_2_a2
ER  - 
%0 Journal Article
%A A. D. Sakharov
%T Spectral density of eigenvalues of the wave equation and vacuum polarization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 178-190
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1975_23_2_a2/
%G ru
%F TMF_1975_23_2_a2
A. D. Sakharov. Spectral density of eigenvalues of the wave equation and vacuum polarization. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 2, pp. 178-190. http://geodesic.mathdoc.fr/item/TMF_1975_23_2_a2/

[1] A. D. Sakharov, DAN SSSR, 177:1 (1967), 70

[2] A. D. Sakharov, Statya v sb. preprintov Instituta prikladnoi matematiki, Gravitation and Fields theory, October, 1967

[3] L. D. Landau, I. Ya. Pomeranchuk, DAN SSSR, 102 (1955), 489 ; ДАН СССР, 98 (1954); 100 (1955), 897; Я. Б. Зельдович, Письма ЖЭТФ, 6 (1967), 1233 | Zbl

[4] H. P. McKean, Jr., I. M. Singer, J. Differ. Geom., 1 (1967), 43 | DOI | MR | Zbl

[5] Ya. B. Zeldovich, UFN, 95 (1968), 209 ; Устное сообщение (1967) | DOI

[6] D. S. De Witt, Phys. Rev., 160 (1967), 1113 ; 162 (1967), 1192; 1239 | DOI

[7] V. Weisskopf, Kgl. Danske Veid. Selsk., 14 (1936), 1

[8] I. A. Batalin, E. S. Fradkin, Preprint FIAN, 137, 1967

[9] V. A. Fok, Izv. AN SSSR, otd. mat.-est. nauk, 5 (1937), 51

[10] J. Schwinger, Phys. Rev., 82 (1951), 664 | DOI | MR | Zbl