Spectral density of eigenvalues of the wave equation and vacuum polarization
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 2, pp. 178-190
Voir la notice de l'article provenant de la source Math-Net.Ru
Effective Lagrangian of the vacuum polarisation is expressed in terms of spectral
density of eigen-values of the wave equation and five-dimensional Green function introduced
by V. A. Fock in his method of the 5-th coordinate. Method can be applied
for external fields of arbitrary strength but only if the interaction of vacuum fields
is neglected. The calculations for the case of vacuum polarisation by gravitational and
electromagnetic fields are performed.
@article{TMF_1975_23_2_a2,
author = {A. D. Sakharov},
title = {Spectral density of eigenvalues of the wave equation and vacuum polarization},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {178--190},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_2_a2/}
}
TY - JOUR AU - A. D. Sakharov TI - Spectral density of eigenvalues of the wave equation and vacuum polarization JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 178 EP - 190 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1975_23_2_a2/ LA - ru ID - TMF_1975_23_2_a2 ER -
A. D. Sakharov. Spectral density of eigenvalues of the wave equation and vacuum polarization. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 2, pp. 178-190. http://geodesic.mathdoc.fr/item/TMF_1975_23_2_a2/