Schrödinger equation in helical coordinates
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 69-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Orthogonal coordinate systems with helical geometry are constructed in euclidean three-dimensional space and the Schrödinger equations in these coordinate systems are obtained. Of the two helical coordinate systems discussed, the external system consists of flat surfaces while the internal system consists of surfaces of constant Gaussian curvature. A singular cylinder separates these two systems.
@article{TMF_1975_23_1_a6,
     author = {T. Garaval'ya and D. Gomatam},
     title = {Schr\"odinger equation in helical coordinates},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--77},
     year = {1975},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a6/}
}
TY  - JOUR
AU  - T. Garaval'ya
AU  - D. Gomatam
TI  - Schrödinger equation in helical coordinates
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 69
EP  - 77
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a6/
LA  - ru
ID  - TMF_1975_23_1_a6
ER  - 
%0 Journal Article
%A T. Garaval'ya
%A D. Gomatam
%T Schrödinger equation in helical coordinates
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 69-77
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a6/
%G ru
%F TMF_1975_23_1_a6
T. Garaval'ya; D. Gomatam. Schrödinger equation in helical coordinates. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 69-77. http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a6/

[1] L. P. Eisenhart, Ann. Math., 35 (1934), 284 ; Phys. Rev., 45 (1934), 427 ; 74 (1948), 87 | DOI | MR | Zbl | DOI | DOI | MR | Zbl

[2] T. Garavaglia, J. Gomatam, Towards a quantum description of DNA, Report, Dublin Institute for Advanced Studies, June, 1973

[3] J. D. Watson, F. H. C. Crick, Nature, 171 (1953), 737 ; 964 | DOI | Zbl

[4] J. L. Synge, A. Schild, Tensor Calculus, University of Toronto Press, Toronto, 1964 | MR | Zbl

[5] T. J. Wilmore, An Introduction to differential Geometry, Oxford University Press, 1959 | MR