Schrödinger equation in helical coordinates
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 69-77
Cet article a éte moissonné depuis la source Math-Net.Ru
Orthogonal coordinate systems with helical geometry are constructed in euclidean three-dimensional space and the Schrödinger equations in these coordinate systems are obtained. Of the two helical coordinate systems discussed, the external system consists of flat surfaces while the internal system consists of surfaces of constant Gaussian curvature. A singular cylinder separates these two systems.
@article{TMF_1975_23_1_a6,
author = {T. Garaval'ya and D. Gomatam},
title = {Schr\"odinger equation in helical coordinates},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {69--77},
year = {1975},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a6/}
}
T. Garaval'ya; D. Gomatam. Schrödinger equation in helical coordinates. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 69-77. http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a6/
[1] L. P. Eisenhart, Ann. Math., 35 (1934), 284 ; Phys. Rev., 45 (1934), 427 ; 74 (1948), 87 | DOI | MR | Zbl | DOI | DOI | MR | Zbl
[2] T. Garavaglia, J. Gomatam, Towards a quantum description of DNA, Report, Dublin Institute for Advanced Studies, June, 1973
[3] J. D. Watson, F. H. C. Crick, Nature, 171 (1953), 737 ; 964 | DOI | Zbl
[4] J. L. Synge, A. Schild, Tensor Calculus, University of Toronto Press, Toronto, 1964 | MR | Zbl
[5] T. J. Wilmore, An Introduction to differential Geometry, Oxford University Press, 1959 | MR