Schrödinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg–de Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 51-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Explicit description of periodic potentials for which the corresponding Schrodinger operator $N$ possesses only the finite number of energy gaps is obtained. Using this result the solution of the Korteveg–de Vries equation with the “finite-gap” initial condition is expressed, by means of the $N$-dimensional $\Theta$-function, $N$ being the number of the nondegenerate energy gaps. The following characteristic property of the $N$-gap periodic potentials and the $N$-soliton decreasing potentials is discovered: the existence of two solutions $\psi_1(x,\lambda), \psi_2(x,\lambda)$ of the Schrodinger equation, for which the product $\psi_1,\psi_2$ is the polynomial $P$ ($\operatorname{deg}P=N$. $N$ is the number of gaps or the number of bound states of $H$) from the spectral parameter $\lambda$.
@article{TMF_1975_23_1_a5,
     author = {A. R. Its and V. B. Matveev},
     title = {Schr\"odinger operators with finite-gap spectrum and $N$-soliton solutions of the {Korteweg{\textendash}de~Vries} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {51--68},
     year = {1975},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a5/}
}
TY  - JOUR
AU  - A. R. Its
AU  - V. B. Matveev
TI  - Schrödinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg–de Vries equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 51
EP  - 68
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a5/
LA  - ru
ID  - TMF_1975_23_1_a5
ER  - 
%0 Journal Article
%A A. R. Its
%A V. B. Matveev
%T Schrödinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg–de Vries equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 51-68
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a5/
%G ru
%F TMF_1975_23_1_a5
A. R. Its; V. B. Matveev. Schrödinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg–de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 51-68. http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a5/

[1] S. P. Novikov, Funktsionalnyi analiz, 8:3 (1974) | MR | Zbl

[2] V. E. Zakharov, L. D. Faddeev, Funktsionalnyi analiz, 5:4 (1971), 18 | MR | Zbl

[3] L. D. Faddeev, Sovremennye problemy matematiki, 3, VINITI, 1974, 93 | MR | Zbl

[4] M. Wadati, M. Toda, J. Phys. Soc. Japan, 32 (1972), 1403 | DOI

[5] B. A. Dubrovin, Funktsionalnyi analiz, 9:1 (1975) | MR

[6] W. Magnus, S. Winkler, Hill's equation, 1966 | MR

[7] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, t. II, IL, 1961 | MR

[8] L. A. Dikii, Izv. AN SSSR, ser. matem., 19 (1955), 187 | MR | Zbl

[9] H. Hoschstadt, Arch. Rat. Mech. Anal., 19 (1965), 353 | MR

[10] N. I. Akhiezer, DAN SSSR, 141 (1961), 456

[11] E. I. Zverovich, UMN, 26:1 (1971), 113 | MR | Zbl

[12] E. Ince, Proc. Roy. Soc., 60, Edinburgh, 1940, 47 | MR

[13] A. I. Its, V. B. Matveev, Funktsionalnyi analiz, 9:1 (1975) | MR | Zbl

[14] Dzh. Springer, Vvedenie v teoriyu rimanovykh poverkhnostei, IL, 1960 | MR

[15] N. G. Chebotarev, Teoriya algebraicheskikh funktsii, Gostekhizdat, 1948