Foldy-Wouthuysen transformation for equations connected to the de Sitter group
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 42-50
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Foldy–Wouthuysen transformation for the equations connected with the De Sitter
group $SO(1,4)$ is considered. The general transformation contains the usual Foldy–Wouthuysen transformation and the Cini–Touschek transformation. It is shown that
the usual Foldy–Wouthuysen transformation is equivalent to the Lorentz transformation
only for the edge weight points with $h=\pm\, n_1$ of the De Sitter group representation
($n_1,n_2$). An equation in the Cini–Touschek representation is for $h=\pm\, n_1$ equivalent
to equations for the zero rest mass particles. From the known equations connection
between the Foldy–Wouthuysen and Lorentz transformations exists for the
Dirac, Kemmer–Duffin and Bargmann–Wigner equations. For the Rarita–Schwinger
equation in the $SO(1,4)$-form there is no equivalence.
			
            
            
            
          
        
      @article{TMF_1975_23_1_a4,
     author = {R. R. Loide},
     title = {Foldy-Wouthuysen transformation for equations connected to the de {Sitter} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {42--50},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a4/}
}
                      
                      
                    R. R. Loide. Foldy-Wouthuysen transformation for equations connected to the de Sitter group. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 42-50. http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a4/