Unitary representations of the Lorentz group and description of particles with spin in the quasipotential approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 32-41

Voir la notice de l'article provenant de la source Math-Net.Ru

An expansion over unitary irreducible representations of the Lorentz group has been found lor the case of arbitrary spin in the spinor and helicity bases using the parametrisation suitable for the quasipotential approach. The addition theorem was also established for the transformation kernel, the use of which makes it possible to construct the local quasipotential in the relativistic configuration space.
@article{TMF_1975_23_1_a3,
     author = {S. Shch. Mavrodiev and N. B. Skachkov},
     title = {Unitary representations of the {Lorentz} group and description of particles with spin in the quasipotential approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--41},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a3/}
}
TY  - JOUR
AU  - S. Shch. Mavrodiev
AU  - N. B. Skachkov
TI  - Unitary representations of the Lorentz group and description of particles with spin in the quasipotential approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 32
EP  - 41
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a3/
LA  - ru
ID  - TMF_1975_23_1_a3
ER  - 
%0 Journal Article
%A S. Shch. Mavrodiev
%A N. B. Skachkov
%T Unitary representations of the Lorentz group and description of particles with spin in the quasipotential approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 32-41
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a3/
%G ru
%F TMF_1975_23_1_a3
S. Shch. Mavrodiev; N. B. Skachkov. Unitary representations of the Lorentz group and description of particles with spin in the quasipotential approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 32-41. http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a3/