Behavior of the density of states in one-dimensional disordered systems near the edges of the spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 132-139
Cet article a éte moissonné depuis la source Math-Net.Ru
Singularities of the density of states in one-dimensional disordered systems near the spectrum bounds have been studied. It is shown that there exist two types of the true bounds, fluctuational and stable ones. The density of states in the neighbourhood of a fluctuational bound is determined by probabilistic properties of the problem. Near a stable spectrum bound the density of states as a function of the energy parameter possisses an universal square root singularity. Specific distinctions of the problem influence only the magnitude of the coefficient of this singularity.
@article{TMF_1975_23_1_a12,
author = {S. A. Gredeskul and L. A. Pastur},
title = {Behavior of the density of states in one-dimensional disordered systems near the edges of the spectrum},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {132--139},
year = {1975},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a12/}
}
TY - JOUR AU - S. A. Gredeskul AU - L. A. Pastur TI - Behavior of the density of states in one-dimensional disordered systems near the edges of the spectrum JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 132 EP - 139 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a12/ LA - ru ID - TMF_1975_23_1_a12 ER -
%0 Journal Article %A S. A. Gredeskul %A L. A. Pastur %T Behavior of the density of states in one-dimensional disordered systems near the edges of the spectrum %J Teoretičeskaâ i matematičeskaâ fizika %D 1975 %P 132-139 %V 23 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a12/ %G ru %F TMF_1975_23_1_a12
S. A. Gredeskul; L. A. Pastur. Behavior of the density of states in one-dimensional disordered systems near the edges of the spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 132-139. http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a12/
[1] I. M. Lifshits, UFN, 83 (1964), 617 | DOI | Zbl
[2] B. I. Halperin, Advances Chem. Phys., 13 (1967), 123 | DOI
[3] Yu. A. Bychkov, A. M. Dykhne, Pisma ZhETF, 3 (1966), 313
[4] V. L. Pokrovskii, G. M. Zaslavskii, ZhETF, 51 (1966), 449
[5] M. Ya. Mints, ZhETF, 50 (1966), 1156
[6] M. M. Benderskii, L. A. Pastur, ZhETF, 57 (1969), 284
[7] T. P. Eggarter, Phys. Rev., B5 (1972), 3863 | DOI
[8] H. L. Frisch, S. P. Lloyd, Phys. Rev., 120 (1960), 1175 | DOI | Zbl
[9] H. Matsuda, K. Ishii, Suppl. Progr. Theor. Phys., 1970, no. 4, 56 | DOI | MR