Kinetic equations for relaxation processes in superconducting alloys
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 111-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of time evolution of the generalized “electron-hole” density matrix of the superconductor is continued, taking into account the scattering of electrons on admixtures in “dirty” superconducting alloys. In this case the free run length of the electrons is small as compared with the macroscopic coherence radius of the superconducting electrons. However, according to the Anderson theorem, scattering on nonmagnetic admixtures does not destroy the superconducting correlations. With the aid of the special asymptotic expansions the simplified kinetic equations are constructed, which describe the dynamics of these correlations (as well as the dynamics of the electron excitations) after the relaxation of electrons on admixtures.
@article{TMF_1975_23_1_a10,
     author = {V. P. Galaiko},
     title = {Kinetic equations for relaxation processes in superconducting alloys},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {111--120},
     year = {1975},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a10/}
}
TY  - JOUR
AU  - V. P. Galaiko
TI  - Kinetic equations for relaxation processes in superconducting alloys
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 111
EP  - 120
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a10/
LA  - ru
ID  - TMF_1975_23_1_a10
ER  - 
%0 Journal Article
%A V. P. Galaiko
%T Kinetic equations for relaxation processes in superconducting alloys
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 111-120
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a10/
%G ru
%F TMF_1975_23_1_a10
V. P. Galaiko. Kinetic equations for relaxation processes in superconducting alloys. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 1, pp. 111-120. http://geodesic.mathdoc.fr/item/TMF_1975_23_1_a10/

[1] V. P. Galaiko, TMF, 22 (1975), 375

[2] V. P. Galaiko, ZhETF, 61 (1971), 382

[3] V. P. Galaiko, ZhETF, 64 (1973), 1824

[4] L. N. Cooper, Phys. Rev., 104 (1957), 1189 | DOI

[5] J. Bardeen, L. Cooper, J. Schrieffer, Phys. Rev., 108 (1957), 1175 | DOI | MR | Zbl

[6] N. N. Bogolyubov, ZhETF, 34 (1958), 58 ; 73 | Zbl

[7] P. W. Anderson, J. Phys. Chem. Sol., 11 (1959), 26 | DOI | Zbl

[8] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[9] A. A. Abrikosov, L. P. Gorkov, ZhETF, 39 (1960), 1781

[10] K. Maki, Progr. Theor. Phys., 29 (1963), 10 ; 333 | DOI | Zbl

[11] A. I. Larkin, Yu. N. Ovchinnikov, J. of Low Temp. Phys., 10 (1973), 407 ; А. И. Ларкин, Ю. Н. Овчинников, ЖЭТФ, 61 (1971), 2147; 64 (1973), 1096 | DOI

[12] A. A. Abrikosov, L. P. Gorkov, N. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, 1962 | MR | Zbl

[13] E. Abrahams, T. Tsuneto, Phys. Rev., 152 (1966), 416 | DOI

[14] L. P. Gorkov, G. M. Eliashberg, ZhETF, 54, 612; 55 (1968), 2430; 56 (1969), 1297; Г. М. Элиашберг, ЖЭТФ, 61 (1971), 1254