Uniqueness of Gibbs limit distributions for the perturbed Ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 335-342 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that in the perturbed Ising model at sufficiently large values of the inverse temperature $\beta\, (\beta >\beta_0)$ and at non-critical values of the external field $\mu$, Gibbs limiting distribution is unique.
@article{TMF_1975_22_3_a5,
     author = {D. G. Martirosyan},
     title = {Uniqueness of {Gibbs} limit distributions for the perturbed {Ising} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {335--342},
     year = {1975},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a5/}
}
TY  - JOUR
AU  - D. G. Martirosyan
TI  - Uniqueness of Gibbs limit distributions for the perturbed Ising model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 335
EP  - 342
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a5/
LA  - ru
ID  - TMF_1975_22_3_a5
ER  - 
%0 Journal Article
%A D. G. Martirosyan
%T Uniqueness of Gibbs limit distributions for the perturbed Ising model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 335-342
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a5/
%G ru
%F TMF_1975_22_3_a5
D. G. Martirosyan. Uniqueness of Gibbs limit distributions for the perturbed Ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 335-342. http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a5/

[1] S. A. Pirogov, Ya. G. Sinai, Funktsionalnyi analiz, 8:1 (1974), 25 | MR

[2] R. A. Minlos, Ya. G. Sinai, Tr. Mosk. matem. ob-va, 17 (1967), 213 | MR

[3] A. Nasr, Tr. Mosk. matem. ob-va, 32 (1975) | MR

[4] R. L. Dobrushin, Teoriya veroyatnostei i ee prilozheniya, 13:2 (1968), 201 | MR

[5] R. L. Dobrushin, Funktsionalnyi analiz, 2:4 (1968), 44 | MR | Zbl