Central extensions of the Poincaré group
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 422-424
Cet article a éte moissonné depuis la source Math-Net.Ru
The group $\widetilde{\mathrm{Ext}}(A,\mathscr P_+^\uparrow)$ of analytical central extensions of the Poincaré group by the arbitrary connected abelian Lie group is found.
@article{TMF_1975_22_3_a14,
author = {V. V. Khrushchev},
title = {Central extensions of the {Poincar\'e} group},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {422--424},
year = {1975},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a14/}
}
V. V. Khrushchev. Central extensions of the Poincaré group. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 422-424. http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a14/
[1] L. Michel, Relativistic Invariance and Internal Symmetries in Axiomatic Field Theory, New York, 1966 | MR
[2] L. Michel, Nucl. Phys., 57 (1964), 356 | DOI | MR | Zbl
[3] Yu. M. Zinovev, TMF, 15 (1973), 139 | MR | Zbl
[4] G. Hochschild, Ann. Math., 54 (1951), 96 | DOI | MR | Zbl
[5] R. A. Macaulay, Trans. Amer. Math. Soc., 95 (1960), 530 | DOI | MR
[6] A. Galindo, J. Math. Phys., 8 (1967), 768 | DOI | MR | Zbl
[7] U. Gattaneo, Commun. Math. Phys., 13 (1969), 96 | MR