Bound magnon-exciton states
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 412-417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of bound magnon-exciton states in one-dimensional chain is solved in the model proposed by Ueno and Oguchi [5]. It is shown, that one or two bound states can exist. Critical values of the parameters, at which the embedding into continuous spectrum takes place, are found. Some numerical results of [5] are not in accordance with those obtained here.
@article{TMF_1975_22_3_a12,
     author = {I. G. Gochev},
     title = {Bound magnon-exciton states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {412--417},
     year = {1975},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a12/}
}
TY  - JOUR
AU  - I. G. Gochev
TI  - Bound magnon-exciton states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 412
EP  - 417
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a12/
LA  - ru
ID  - TMF_1975_22_3_a12
ER  - 
%0 Journal Article
%A I. G. Gochev
%T Bound magnon-exciton states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 412-417
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a12/
%G ru
%F TMF_1975_22_3_a12
I. G. Gochev. Bound magnon-exciton states. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 412-417. http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a12/

[1] Y. Tanabe, T. Morya, S. Sugano, Phys. Rev. Lett., 15 (1965), 1023 | DOI

[2] Y. Tanabe, K. Gondara, H. Murata, J. Phys. Soc. Japan, 25 (1968), 1562 | DOI | MR

[3] S. Freeman, J. Hopfield, Phys. Rev. Lett., 21 (1968), 910 | DOI

[4] R. Meltzer et al., Phys. Rev. Lett., 21 (1968), 913 | DOI

[5] Y. Ueno, T. Oguchi, J. Phys. Soc. Japan, 34 (1973), 613 | DOI

[6] V. M. Agranovich, Teoriya eksitonov, «Nauka», 1968

[7] I. G. Gochev, TMF, 15 (1973), 120