Bound magnon-exciton states
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 412-417
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of bound magnon-exciton states in one-dimensional chain is solved in the model proposed by Ueno and Oguchi [5]. It is shown, that one or two bound states can exist. Critical values of the parameters, at which the embedding into continuous spectrum takes place, are found. Some numerical results of [5] are not in accordance with those obtained here.
@article{TMF_1975_22_3_a12,
author = {I. G. Gochev},
title = {Bound magnon-exciton states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {412--417},
year = {1975},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a12/}
}
I. G. Gochev. Bound magnon-exciton states. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 412-417. http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a12/
[1] Y. Tanabe, T. Morya, S. Sugano, Phys. Rev. Lett., 15 (1965), 1023 | DOI
[2] Y. Tanabe, K. Gondara, H. Murata, J. Phys. Soc. Japan, 25 (1968), 1562 | DOI | MR
[3] S. Freeman, J. Hopfield, Phys. Rev. Lett., 21 (1968), 910 | DOI
[4] R. Meltzer et al., Phys. Rev. Lett., 21 (1968), 913 | DOI
[5] Y. Ueno, T. Oguchi, J. Phys. Soc. Japan, 34 (1973), 613 | DOI
[6] V. M. Agranovich, Teoriya eksitonov, «Nauka», 1968
[7] I. G. Gochev, TMF, 15 (1973), 120